Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лабораторная работа №1

.doc
Скачиваний:
31
Добавлен:
06.02.2016
Размер:
977.92 Кб
Скачать

Лабораторная работа № 1

Группа РФ - 13

Тема: Архитектура ПВЭМ.

Цель: Ознакомиться с основными характеристиками ПВЭМ. Описать подробно устройство многоядерных процессоров.

Ход работы:

1.Краткая схема ЭВМ.

2.Краткое описание структуры ЭВМ.

3.Подробное описание многоядерных процессоров.

ФИО

Подпись

Дата

Лист

Разработал

Недовесов С. С.

06.09.13

1

Проверил

Зайцев С.И.

Листов

Н.контроль

5

Т.контроль

Архитектура персональной ВЭМ:

Жесткий диск - накопи́тель на жёстких магни́тных ди́сках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге «винче́стер» — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Характеристики

Интерфейс (англ. interface) — техническое средство взаимодействия 2-х разнородных устройств, что в случае с жёсткими дисками является совокупностью линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии (контроллеры интерфейсов), и правил (протокола) обмена. Современные серийно выпускаемые внутренние жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, SDIO и Fibre Channel.

Ёмкость (англ. capacity) — количество данных, которые могут храниться накопителем. С момента создания первых жёстких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная ёмкость непрерывно увеличивается. Ёмкость современных жёстких дисков (с форм-фактором 3,5 дюйма) на сентябрь 2011 года достигает 4000 Гб (4 терабайт) и близится к 5 Тб. В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГиБ.

Физический размер (форм-фактор; англ. dimension) — почти все накопители 2001—2008 годов для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма — под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8, 1,3, 1 и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time) — среднее время, за которое винчестер выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Диапазон этого параметра — от 2,5 до 16 мс. Как правило, минимальным временем обладают диски для серверов (например, у Hitachi Ultrastar 15K147 — это 3,7 мс), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 мс). Для сравнения, у SSD-накопителей этот параметр меньше 1 мс.

Скорость вращения шпинделя (англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 5900, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствует гироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.

Надёжность (англ. reliability) — определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду (англ. IOPS) — у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Сопротивляемость ударам (англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:

внутренняя зона диска: от 44,2 до 74,5 Мб/с;

внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера — буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 128 Мб.

Операти́вная па́мять (англ. Random Access Memory, память с произвольным доступом; комп. жарг. Память, Оперативка) — энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти.

Обмен данными между процессором и оперативной памятью производится:

  1. непосредственно,

  2. либо через сверхбыструю память, 0-го уровня — регистры в АЛУ, либо при наличии кэша — через него.

Содержащиеся в оперативной памяти данные доступны только тогда, когда на модули памяти подаётся напряжение, то есть, компьютер включён. Пропадание на модулях памяти питания, даже кратковременное, приводит к искажению либо полному уничтожению данных в ОЗУ.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. Для сохранения содержимого ОЗУ в таком случае, применяют запись содержимого оперативной памяти в специальный файл (в системе Windows XP он называется hiberfil.sys).

В общем случае, оперативная память содержит данные операционной системы и запущенных на выполнение программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.

Монитор (от лат. monitor — напоминающий, предупреждающий, надзиратель, надсмотрщик).

Монитор — аппарат, предназначенный для вывода графической или текстовой информации на:

Дисплей — устройство для показа изображений, порождаемых другими устройствами (например, компьютерами).

Прибор для контроля определённых параметров, которые нужно непрерывно или регулярно отслеживать, например, уровня радиации.

Видеоконтрольное устройство (в телевидении — для контроля качества изображения, в системах видеонаблюдения — для наблюдения за контролируемым пространством).

Монитор — прибор, представляющий собой гибрид телевизора и видеокамеры, описанный в романе Джорджа Оруэлла «1984». Используется для слежки за гражданами.

Монито́р — конструктивно законченное устройство, предназначенное для визуального отображения информации.

Современный монитор состоит из экрана (дисплея), блока питания, плат управления и корпуса. Информация для отображения на мониторе поступает с электронного устройства, формирующего видеосигнал (в компьютере — видеокарта). В некоторых случаях в качестве монитора может применяться и телевизор.

Классификация мониторов

По типу экрана

ЭЛТ — монитор на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)

ЖК — жидкокристаллические мониторы (англ. liquid crystal display, LCD)

Плазменный — на основе плазменной панели (англ. plasma display panel, PDP, gas-plazma display panel)

Проектор — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал); и проекционный телевизор

OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)

Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза

Лазерный — на основе лазерной панели (пока только внедряется в производство)

По размерности отображения

двумерный (2D) — одно изображение для обоих глаз

трёхмерный (3D) — для каждого глаза формируется отдельное изображение для получения эффекта объёма.

По типу видеоадаптера

HGC

CGA

EGA

VGA/SVGA

По типу интерфейсного кабеля

композитный

компонентный

D-Sub

DVI

USB

HDMI

DisplayPort

S-Video

Thunderbolt

Основные параметры

Соотношение сторон экрана — стандартный (4:3), широкоформатный (16:9, 16:10) или другое соотношение (например 5:4)

Размер экрана — определяется длиной диагонали, чаще всего в дюймах

Разрешение — число пикселей по горизонтали и вертикали

Глубина цвета — количество бит на кодирование одного пикселя (от монохромного до 32-битного)

Размер зерна или пикселя

Частота обновления экрана (Гц)

Время отклика пикселей (не для всех типов мониторов)

Угол обзора

Материнская плата (англ. motherboard, MB, также используется название англ. mainboard — главная плата; сленг. мама, мать, материнка) — сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера либо сервера начального уровня (центральный процессор, контроллер оперативной памяти и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Именно материнская плата объединяет и координирует работу таких различных по своей сути и функциональности комплектующих, как процессор, оперативная память, платы расширения и всевозможные накопители.

Основные компоненты

Основные компоненты, устанавливаемые на материнской плате:

Центральный процессор (ЦПУ).

Набор системной логики (чипсет — англ. chipset) — набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: «северного» и «южного мостов».

Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер — обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер.

Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как HyperTransport и SCI.

Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессоры в AMD K8 и Intel Core i7), что упрощает функции системного контроллера и снижает тепловыделение.

В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express. Ранее использовались общие шины (ISA, VLB, PCI) и шина AGP.

Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер — содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC — используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) — микросхемы, обеспечивающей поддержку исторических низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши).

Как правило, северный и южный мосты реализуются в виде отдельных СБИС, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней.

Оперативная память (также оперативное запоминающее устройство, ОЗУ). Каждая ячейка оперативной памяти имеет свой индивидуальный адрес. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. ОЗУ изготавливается как отдельный блок; также может входить в конструкцию однокристальной ЭВМ или микроконтроллера в виде оперативной памяти.

Загрузочное ПЗУ. Хранит ПО, которое исполняется сразу после включения питания. Как правило, загрузочное ПЗУ содержит BIOS.

Классификация материнских плат по форм-фактору

Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для персонального компьютера, места её крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, разъёма центрального процессора (если он есть) и слотов для оперативной памяти, а также тип разъема для подключения блока питания.

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей.

Устаревшие: Baby-AT; Mini-ATX; полноразмерная плата AT; LPX.

Современные: ATX; microATX; FlexATX; NLX; WTX, CEB.

Внедряемые: Mini-ITX и Nano-ITX; Pico-ITX; BTX, MicroBTX и PicoBTX

Видеока́рта (также видеоада́птер, графический ада́птер, графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель)  — электронное устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

В настоящее время, однако, эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения - качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATI) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP, PCI Express). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ); в этом случае устройство, строго говоря, не может быть названо видеокартой.

Характеристики видеокарт:

ширина шины памяти, измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.

объём видеопамяти, измеряется в мегабайтах — объём собственной оперативной памяти видеокарты. Больший объём далеко не всегда означает большую производительность.

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера (UMA — Unified Memory Access).

частоты ядра и памяти — измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.

текстурная и пиксельная скорость заполнения, измеряется в млн. пикселов в секунду, показывает количество выводимой информации в единицу времени.

Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса, используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Архитектура фон Неймана

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки данных, изобретённого Джоном фон Нейманом.

Дж. фон Нейман придумал схему постройки компьютера в 1946 году.

Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов.

Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса и отдаёт памяти команду чтения.

  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных и сообщает о готовности.

  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её.

  1. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода, — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды остановка или переключение в режим обработки прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

Конвейерная архитектура

Вычислительный конвейер

Конвейерная архитектура (англ. pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифровка команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

  • получение и декодирование инструкции,

  • адресация и выборка операнда из ОЗУ,

  • выполнение арифметических операций,

  • сохранение результата операции.

После освобождения -й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в ступеней займёт единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

Действительно, при отсутствии конвейера выполнение команды займёт единиц времени (так как для выполнения команды по-прежнему необходимо выполнять выборку, дешифровку и т. д.), и для исполнения команд понадобится единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения команд понадобится всего лишь единиц времени.

Факторы, снижающие эффективность конвейера:

  1. Простой конвейера, когда некоторые ступени не используются (например, адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами).

  2. Ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд — out-of-order execution).

  3. Очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Некоторые современные процессоры имеют более 30 ступеней в конвейере, что повышает производительность процессора, но, однако, приводит к увеличению длительности простоя (например, в случае ошибки в предсказании условного перехода). Не существует единого мнения по поводу оптимальной длины конвейера: различные программы могут иметь существенно различные требования.

Суперскалярная архитектура

Способность выполнения нескольких машинных инструкций за один такт процессора путем увеличения числа исполнительных устройств. Появление этой технологии привело к существенному увеличению производительности, в то же время существует определенный предел роста числа исполнительных устройств, при превышении которого производительность практически перестает расти, а исполнительные устройства простаивают. Частичным решением этой проблемы являются, например, технология Hyper-threading.

CISC-процессоры

Complex instruction set computer — вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC являются микропроцессоры семейства x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд: в начале процесса исполнения сложные команды разбиваются на более простые микрооперации (МОП), исполняемые RISC-ядром).

RISC-процессоры

Reduced instruction set computer — вычисления с упрощённым набором команд (в литературе слово reduced нередко ошибочно переводят как «сокращённый»). Архитектура процессоров, построенная на основе упрощённого набора команд, характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson).

Упрощение набора команд призвано сократить конвейер, что позволяет избежать задержек на операциях условных и безусловных переходов. Однородный набор регистров упрощает работу компилятора при оптимизации исполняемого программного кода. Кроме того, RISC-процессоры отличаются меньшим энергопотреблением и тепловыделением.

Среди первых реализаций этой архитектуры были процессоры MIPS, PowerPC, SPARC, Alpha, PA-RISC. В мобильных устройствах широко используются ARM-процессоры.

MISC-процессоры

Minimum instruction set computer — вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

VLIW-процессоры

Very long instruction word — сверхдлинное командное слово. Архитектура процессоров с явно выраженным параллелизмом вычислений, заложенным в систему команд процессора. Являются основой для архитектуры EPIC. Ключевым отличием от суперскалярных CISC-процессоров является то, что для них загрузкой исполнительных устройств занимается часть процессора (планировщик), на что отводится достаточно малое время, в то время как загрузкой вычислительных устройств для VLIW-процессора занимается компилятор, на что отводится существенно больше времени (качество загрузки и, соответственно, производительность теоретически должны быть выше). Примером VLIW-процессора является Intel Itanium.

Центральный процессор (ЦП, CPU – англ. c é ntral pr ó cessing ú nit, дословно – центральное вычислительное устройство) – процессор машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера.

Кэш (англ. cache) – промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из медленной памяти или их перевычисление, что делает среднее время доступа короче.

Кэширование – это использование дополнительной быстродействующей памяти ( кэш-памяти) для хранения копий блоков информации из основной (оперативной) памяти, вероятность обращения к которым в ближайшее время велика.

Различают кэши 1-, 2- и 3-го уровней. Кэш 1-го уровня имеет наименьшую латентность ( время доступа), но малый размер, кроме того кэши первого уровня часто делаются многопортовыми. Так, процессоры AMD K8 умели производить 64 бит запись+64 бит чтение либо два 64-бит чтения за такт, процессоры Intel Core могут производить 128 бит запись+128 бит чтение за такт. Кэш 2-го уровня обычно имеет значительно большие латентности доступа, но его можно сделать значительно больше по размеру. Кэш 3-го уровня самый большой по объёму и довольно медленный, но всё же он гораздо быстрее, чем оперативная память.

Многоядерные процессоры содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Двухядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двухядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Duo состоит из двух физических ядер, что существенно влияет на скорость его работы.