Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vse (1).doc
Скачиваний:
23
Добавлен:
11.02.2016
Размер:
3.28 Mб
Скачать

Функции интерферона (ифн)

Важнейшие функции интерферона (ифн): антивирусная, противоопухолевая, иммуномодулирующая и радиопротективная. Различают три интерферона (ифн):

а-ИФН синтезируют лейкоциты периферической крови (ранее был известен как лейкоцитарный ИФН);

b-ИФН синтезируют фибробласты (ранее известен как фибробластный ИФН);

у-ИФН — продукт стимулированных Т-лимфоцитов, NK-клеток и (возможно) макрофагов (ранее был известен как иммунный ИФН).

По способу образования различают ИФН типа I (образуется в ответ на обработку клеток вирусами, молекулами двухцепочечной РНК, полинуклеотидами и рядом низкомолекулярных природных и синтетических соединений) и ИФН типа II (продуцируется лимфоцитами и макрофагами, активированными различными индукторами; действует как цитокин).

ИФН видоспецифичны. Каждый биологический вид, способный к их образованию, продуцирует свои уникальные продукты, похожие по структуре и свойствам, но не способные проявлять перекрёстный антивирусный эффект (то есть действовать в условиях организма другого вида).

Механизм антивирусного действия интерферона (ифн)

Интерферон ( ИФН ) индуцируют антивирусное состояние клетки (резистентность к проникновению или блокада репродукции вирусов). Блокада репродуктивных процессов при проникновении вируса в клетку обусловлена угнетением трансляции вирусной мРНК. При этом противовирусный эффект интерферона (ифн) не направлен против конкретных вирусов; то есть ИФН не обладают вирусспецифтностъю. Это объясняет их универсально широкий спектр антивирусной активности. ИФН взаимодействует с интактными клетками ещё неинфицированными клетками, препятствуя реализации репродуктивного цикла вирусов за счёт активации клеточных ферментов (протеинкиназ).

Естественные киллеры, натуральные киллеры (англ. Natural killer cells (NK cells)) — большие гранулярные лимфоциты, обладающие цитотоксичностью против опухолевых клеток и клеток, зараженных вирусами. В настоящее время NK-клетки рассматривают как отдельный класс лимфоцитов. NK выполняют цитотоксические и цитокин-продуцирующие функции. NK являются одним из компонентов клеточного врождённого иммунитета.

У NK существует сложная система рецепторов, распознающих молекулы собственных клеток организма. Кроме того, NK имеют множество рецепторов к стресс-индуцированным клеточным лигандам, которые свидетельствуют о повреждении клетки. К таким рецепторам относятся естественные рецепторы цитотоксичности (natural cytotoxicity receptors (NCRs), NKG2D. Они активируют цитотоксические функции NK.

42. Перетворення азотовмісних сполук мікроорганізмами. Збудники процесів, амоніфікації, денітрифікації та азотфіксації.

Кругообіг азоту складається з процесу мікробіїоіі і^ого фіксаціїїз ат­мосфери і включення зв'язаного азоту у малий біологічний кругообіг, у якому виділяють деструкцію азотвмісних органічних сполук до аміаку (амоніфікація), окиснення аміку до азотної кислоти (нітрифікація), на­ступного відновлення до вільного азоту (денітрифікація), який надхо­дить у атмосферу. . В процесі біологічного циклу нітрат – іони (NO3-) та іони амонію (NH4+), поглинаємі рослинами з грунтової вологи, перетворюються у білки, нуклеїнові кислоти і так далі. Потім утворяться відходи у вигляді загиблих організмів, що є об'єктами життєдіяльності інших бактерій та грибів, перетворюючих їх в аміак. Так виникає новий цикл кругообіга.

Азот составляет 80% земной атмосферы; количество азота, участвующего в круговороте, исчисляется 108—109 т в год. Как газ азот химически инертен; он не может быть непосредственно использован растениями, животными и большинством микроорганизмов.

Азотфіксацією називається відновлення молекулярного азоту (N2) до аміаку ферментом нітрогеиазою в клітинах азотфіксуючих бактерій. Азотфиксация в природе осуществляется как свободноживущими микроорганизмами (несим-биотйческая азотфиксацин), так и бактериями, существующими в сообществе с растениями (симбиотическая азотфиксация).

Несимбиотическая азотфиксация осуществляется бактериями рода Azotobacter, фиксирующими около 20 мг азота на 1 г использованного сахара, аноксигенными фототрофными бактериями, цианобактериями, кл остри днями, факультативными анаэробами Bacillus polymixa, Klebsiella pneumoniae, хемолитотрофными бактериями Alcaligenes latus, Xanthobacter autotrophicus, метил отрофны ми, метано генным и и сульфатредуцирующими бактериями).

Симбиотическая фиксация азота осуществляется бактериями рода Rhizobium (вызывают образование клубеньков у бобовых растений), актиномицетами рода Franckia (симбионты тропических растений), цианобактериями Anabaena azollae, Nostoc punctiforme.

Крім азотфіксаторів віпьноіснуючих (азотобактер, анаеробні бакте­рії) та симбіотичних {бульбочкогіі баїаер/ї), були також виявлені асоціа­тивні й ендофітні діазотрофи. Асоціативні діазотрофи (снують на коре­нях і стеблах рослин, живляться фотосинтетичними продуктами, що екскретуються назовні. Ендофітні діазотрофи Існують у міжклітинних просторах рослинних тканин і використовують продукти фотосинтезу, що містяться у рослині. Виявлені також види, які можуть існувати як у ризосфері, так І ендофітно.

При разложении растительных и животных белков в почве освобождается аммоний. Амоніфікація - розклад органічних азотоемісних сполук з утво­ренням аміаку. Амоніфікації підлягають білки, пептони, пептиди, нукле­їнові кислоти^ сечовина, сечова і гіпурова кислоти. Здатність до амоні­фікації притаманна широкому колу фунтових мікроорганізмів - бактері­ям, грибам, актиноміцетам.

Розклад білків здійснюють аеробні й анаеробні неспороутворюючі І спороутворюючі бактерії, зокрема Proteus vulgaris, Pseudomonas aerugi^ поза, P.fluorescens, Clostndium tetani, C. putrificum, C.sporogenes, Bacillus subtilis, B.mycoides, B.cereus та інші, a також гриби.

Собственно процесс аммонификации обусловлен деятельностью различных грибов и бактерий (Bacillus cereus, Proteus vulgaris, псевдомонады и др.). Если в почве достаточно кислорода, то аммоний подвергается нитрификации.

Нітрифкацією називається окиснення аміаку до азотистої і азо­тної кислот. Перша фаза . Окиснення NH4* відбувається за участю гідроксиламіноксидоредук-гази. Першу фазу нітрифікації здійснюють грамнегативні одноклітинні ба­ктерії, що віднесені до класу Proteobacteria. Роди Nitrosomonas (N.europea), Nitrosococcus, Nitrosospira, Nitrosolobus, Nitrosovibrio. Друга фаза нітрифікації' полягає в окисненні нітриту до нітрату і описується рівнянням: N02 +2Н2О ^ N03+2i-r+2e. Реакцію каталізує мембранзв'язана нітритоксидоредуктаза.

Нитр-ю осуществляют две труппы микроорганизмов, соответственно окисляя аммиак до нитрита (виды Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus) и нитрит до нитрата {Nitrobacter, Nitrospina, Nitrococcus). Частично нитрификация осуществляется и при участии гетеротрофных бактерий (виды Arthrobacter), образующих нитрит из аммония, и грибов, способных окислять аммоний до нитрата. Однако скорость нитрификации у гетеротрофных бактерий в 103-104 раз меньше, чем у аутотрофных.

Нитрат — основное азотистое вещество почвы, используемое растениями в процессе роста. Практика удобрения почв навозом основана на способности микроорганизмов к минерализации органического азота. Нитраты легко выщелачиваются из почвы и, таким образом, часть связанного азота в виде солевых растворов удаляется с материков в океан.

Связанный азот, необходимый для роста растений, удаляется из почвы также в процессе денитрификации, идущем с освобождением газообразного азота. Удаление токсичных нитратов и мутагенных нитритов из пресной воды в реакциях денитрификации приводит к улучшению качества питьевой воды. Таким образом, микроорганизмы — естественные регуляторы количества связанного (то есть доступного для жизнедеятельности) азота в природе.

Денітріфікація (диссимиляционная нитратредукция). Цей процес забезпечується грунтовими бактеріями – денітріфікаторами. NO3 (нитрат) → NO2 (нітрит)→ NO→ N2O→ N2. Більшість денітр-рів - хемоорганогетеротрофи, факультативні анаероби. Нітрати використ-ся ними як кінцевий акцептор електронів при окисненні орг.субстратів до СО2 і Н2О. Бактерії переключаються не денітріфік-ю тільки за відсутності О2. Головна мета деніт-ї - Е, а кінцевий продукт – молекулярний азот. Способностью к денитрификации обладают многие факультативно аэробные бактерии (Pseudomonas aeruginosa, P. stutzeri, P. fluorescens, Bacillus Ucheniformis, Paracoccus denitrificans, Thiobacillus denitrificans). Ассимиляционная нитратредукция характерна для большинства микроорганизмов и для растений. Нитрат служит источником азота для построения клеточных компонентов. Источником азота для растений и микроорганизмов может быть и аммоний, усвояемый ими в процессе ассимиляции аммиака.

43. Наведіть докази на користь того, що віруси є живими об'єктами.

не раз возникали дискуссии по поводу того, что же такое вирусы — живое или не живое, организмы или не организмы.

є гіпотеза про те, що віруси походять з «утікача» нуклеїнової кислоти, тобто нуклеїнової кислоти, що набула спроможність реплікуватись незалежно від тієї клітини, із якої виникла смердота, хоча при цьому передбачається, що така ДНК реплікується з використанням структур цієї або іншої клітин.

На підставі дослідів фільтрації через градуйовані лінійні фільтри були визначені розміри вірусів. Виявилося, що розмір найдрібніших із них становив 20-30 нанометрів, а найбільших — 300—400 нанометрів.

У процесі подальшої еволюції у вірусів змінювалася більше форма, аніж хімічна будова. Таким чином, віруси, ймовірно, походять від клітинних організмів.

Безусловно, вирусы обладают основными свойствами всех других форм жизни — способностью размножаться, наследственностью, изменчивостью, приспособляемостью к условиям внешней среды; они занимают определенную экологическую нишу, на них распространяются законы эволюции органического мира на земле. Поэтому к середине 40-х годов сложилось представление о вирусах как о наиболее простых микроорганизмах. Логическим развитием этих взглядов было введение термина «вирион», обозначавшего внеклеточный вирусный индивидуум. Однако с развитием исследований по молекулярной биологии вирусов стали накапливаться факты, противоречащие представлению о вирусах как организмах.

Отсутствие собственных белок-синтезирующих систем, дисъюнктивный способ репродукции, интеграция с клеточным геномом, существование вирусов сателлитов и дефектных вирусов, феноменов множественной реактивации и комплементации — все это мало укладывается в представ­ление о вирусах как организмах. Представление это еще более теряет смысл, когда мы обратимся к вирусоподобным структурам — плазмидам, вироидам и агентам типа возбудителя скрепи.

Плазмиды (другие названия — эписомы, эпивирусы) представляют двунитчатые кольцевые ДНК с молекулярной массой в несколько миллионов, реплицируемые клеткой. Они вначале были обнаружены у прокариотов, и с их существованием связаны разные свойства бактерий, например устойчивость к антибиотикам. Поскольку плазмиды обычно не связаны с бактериальной хромосомой (хотя многие из них способны к интеграции), их считают экстрахромосомными факторами наследственности.

Плазмиды были обнаружены и у эукариотов (дрожжей и других грибов), более того, обычные вирусы высших животных также могут существовать в виде плазмид, т. е. кольцевых ДНК, лишенных собственных белков и реплицируемых клеточными ферментами синтеза ДНК. В частности, в виде плазмид могут существовать вирусы папилломы коров, обезьяний вирус 40 (8У40). При персистенции вируса герпеса в культуре клеток могут образовываться плазмиды — кольцевые ДНК, составляющие лишь часть генома этого вируса.

К вирусам примыкают вироиды — агенты, вызывающие заболевания некоторых растений и способные передаваться как обычные инфекционные вирусы. При их изучении оказалось, что это сравнительно небольшие по размерам молекулы кольцевой суперспирализованной РНК, состоящие из немногих, 300—400 нуклеотидов. Механизм репликации вирои-дов не вполне ясен.

Наконец, следует упомянуть об агенте скрепи — возбудителе подострой трансмиссивной губкообразной энцефалопатии овец. Вероятно, сходные агенты вызывают и другие формы губкообразных энцефалопатии животных и человека, в основе которых лежит прогрессирующее разрушение нервных клеток, в результате чего мозг приобретает губчатую (спонгиоформную) структуру. Агент скрепи имеет белковую природу и даже получил специальное название — прион (от слов рго1ешасеош шгесйош; рагйс1е — белковая инфекционная частица). Предполагается, что этот белок является одновременно и индуктором и продуктом какого-то клеточного гена, ставшего авто­номным и ускользнувшего от регуляции («взбесившийся ген»).

Все вирусы, включая сателлиты и дефектные вирусы, плазмиды, вироиды и даже агенты скрепи (их гены), имеют нечто общее, их объединяющее. Все они являются автономными генетическими структурами, способными функционировать и репродуцироваться в восприимчивых к ним клетках животных, растений, простейших, грибов, бактерий. По-видимому, это наиболее общее определение, позволяющее очертить царство вирусов. На основании сформулированного определения вирусы, не будучи организмами, тем не менее являются своеобразной формой жизни и поэтому подчиняются законам эволюции органического мира на земле.

  1. Морфологічна будова імунної системи. Первинні (центральні) та вторинні органи імунної системи. (див.95)

Иммунная система человека и других позвоночных представляет из себя комплекс органов и клеток, способных выполнять иммунологические функции. Прежде всего иммунный ответ осуществляют лейкоциты. Бо́льшая часть клеток иммунной системы происходит из кроветворных тканей. У взрослых людей развитие этих клеток начинается в костном мозге. Лишь T-лимфоциты дифференцируются внутри тимуса (вилочковой железы). Зрелые клетки расселяются в лимфоидных органах и на границах с окружающей средой, около кожи или на слизистых оболочках.

  1. Цитоплазма та внутрішньоклітинні структури прокаріот. Ядерний апарат бактерій. Включення мікробної клітини.

Цитоплазма бактерий представляет собой коллоидный матрикс, служащий для реализации жизненно важных функций. В прокариотических клетках отсутствует эндоплазматическая сеть, а рибосомы свободно плавают в цитоплазме. Нет у прокариот и митохондрий; частично их функции выполняет клеточная мембрана. Цитоплазма большинства бактерий содержит ДНК, рибосомы и запасные гранулы; остальное пространство занимает коллоидная фаза. Её основные составляющие — растворимые ферменты и растворимые РНК (мРНК и тРНК). Разнообразные органеллы, характерные для эукариотической клетки, у бактерий отсутствуют, а их функции выполняет бактериальная ЦПМ, отделяющая цитоплазму от клеточной стенки. У подавляющего числа бактерий цитоплазма относительно неподвижна, но у видов Streptococcus, Proteus, Clostridium имеются специальные трубочки — рапидосомы, аналогичные микротрубочкам простейших.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]