Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologia_1-31.doc
Скачиваний:
56
Добавлен:
11.02.2016
Размер:
353.79 Кб
Скачать

Глава 24. Еволюцію та механізм фотосинтезу.

Фотосинтез— процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов. В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Световая (светозависимая) стадія - образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. Роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, то есть НАДФ Н2.

Темновая стадія - с участием АТФ и НАДФН происходит восстановление CO2 до глюкозы (C6H12O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

САМ фотосинтез - разделение ассимиляции CO2 и цикла Кальвина не в пространстве как у С4, а во времени. Ночью в вакуолях клеток при открытых устьицах накапливается малат, днём при закрытых устьицах идёт цикл Кальвина. Этот механизм позволяет максимально экономить воду, однако уступает в эффективности С4 и С3. Он оправдан при стресстолерантной жизненной стратегии.

Значение фотосинтеза. Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

Происхождение и эволюция фотосинтеза

     Согласно эволюционной теории происхождения и развития жизни, которая формулирована И. Опариным, первичные, способные к самовоспроизводству живые образования возникли в результате абиогенной химической эволюции. Будучи окруженными близкими по составу, но еще неживыми органическими соединениями, эти первичные существа могли осуществлять в бескислородной среде анаэробный гетеротрофный тип питания с помощью небольшого набора ферментов. Постепенное истощение и деградация органических веществ, синтезированных абиогенным путем, сопровождались накоплением все более окисленных соединений, вплоть до появления наиболее бедного энергией соединения углерода — углекислоты. Это влекло за собой необходимость все большего и большего совершенствования и усложнения ферментативного аппарата, необходимого для ассимиляции все более окисленных веществ. В этих условиях, которые все еще характеризовались отсутствием в среде кислорода, вполне вероятно возникновение первичных автотрофных организмов, которые осуществляли восстановление углекислоты за счет химической энергии, полученной из минеральных веществ. Такой тип питания получил название хеморедукции. Среди современных организмов известна группа сульфатредуцирующих микроорганизмов, которые восстанавливают сульфаты до сероводорода, используя для этой цели молекулярный водород.

Появление в этот период, который характеризовался сильно восстановительными условиями среды, светпоглощающих пигментов фотосенсибилизаторов привело к замене химической энергии в процессах хеморедукции на световую. Возник простейший тип фотоавтотрофного питания - фоторедукции и бактериального фотосинтеза. Такой тип питания осуществляют современные фототрофные бактерии — пурпурные серобактерии и зеленые серобактерии, у которых роль пигмента-фотосенсибилизатора выполняет бактериохлорофилл и которые являются строгими анаэробами. Пурпурные и зеленые серобактерии восстанавливают углекислоту за счет энергии света, используя в качестве Н-донора сероводород (H2S):

Представленное итоговое уравнение бактериального фотосинтеза (фоторедукции) очень напоминает, как мы видим, приведенное выше суммарное уравнение фотосинтеза хлорофиллоносных растений. В результате сравнительного анализа Ван-Ниль показал, что оба эти процесса могут быть записаны в общем виде одним итоговым уравнением:

где Н2А — донор водорода, в качестве которого фотосинтезирующие бактерии используют сероводород, а остальные растения — воду. Вода является более окисленным соединением по сравнению с сероводородом. Использование ее в качестве донора водорода связано с необходимостью дополнительной затраты энергии и стало возможно благодаря дальнейшему совершенствованию фотохимического аппарата, которое состояло в появлении у растений (начиная с сине-зеленых водорослей) хлорофилла (вместо бактериохлорофилла) и дополнительной фотохимической системы, так называемой «фотосистемы П».

Использование воды в качестве донора водорода привело к тому, что в процессе фотосинтеза стал выделяться кислород, что, в свою очередь, ознаменовало переход от анаэробной к аэробной жизни на нашей планете.

На эволюциопную связь фото редукции и фотосинтеза может указывать способность ряда сине-зеленых, зеленых, красных и бурых водорослей обратимо переходить к фоторедукции при переводе их в анаэробные условия в атмосферу водорода.

Таким образом, фотоавтотрофный тип питания и фотосиптез возникли в процессе эволюции как «надстройка» над первичным гетеротрофным типом питания. Появление на Земле фотосинтеза было обусловлено всем ходом предшествовавшей биологической эволюции и явилось поворотпым пунктом в переходе от анаэробного к аэробному типу обмена веществ.

Соседние файлы в предмете Биология