Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
расчетка.docx
Скачиваний:
32
Добавлен:
12.02.2016
Размер:
149.08 Кб
Скачать

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ХАРЧОВИХ ТЕХНОЛОГІЙ

Кафедра біотехнології і мікробіології

Розрахунково-графічна робота

до курсової роботи з дисципліни

«Біохімічні основи біосинтезу»

Виконала студентка БТЕК-3-1

Гнатюк Алла Дмитрівна

Перевірила

Конон Анастасія Дмитрівна

Київ 2012

РЕФЕРАТ

Дана розрахунково-графічна робота виконана згідно отриманого завдання. Структура розрахунково-графічної роботи відповідає вимогам щодо порядку оформлення курсових робіт, вказаних в «Методичних вказівках до виконання курсової роботи» (номер 6501).

Зміст даної розрахунково-графічної роботи викладений на 14-ти сторінках. Курсова робота містить, 2 схеми, 1 малюнок, , 12 літературних джерел.

У загальній частині розрахунково-графічної роботи представлена характеристика оцтової кислоти.

У розділі «Характеристика поживного середовища для вирощування продуцента оцтової кислоти» розраховане поживне середовище з урахуванням всіх потрібних речовин в г/л.

У розділі «Шлях катаболізму етанолу у продуцента оцтової кислоти» розглянута схема окиснення етанолу за допомою НАД+-залежних ферментів.

У розділі «Шлях біосинтезу оцтової кислоти з етанолу» проведено аналіз отримання оцтової кислоти і також її подальше окиснення.

Ключові слова: Acetobacter suboxydans, катаболізм, оцтова кислота.

Зміст

Вступ 4

Розділ 1. 6

Характеристика оцтової кислоти 6

Розділ 2. 10

Характеристика поживного середовища для вирощування продуцента оцтової кислоти 10

Розділ 3. 11

Шлях катаболізму етанолу у продуцента оцтової кислоти 11

Розділ 4. 12

Шлях біосинтезу оцтової кислоти з етанолу 12

Висновки 13

ЛІТЕРАТУРА 14

Вступ

З найдавніших часів людина використовувала біотехнологічні процеси при хлібопеченні, готуванні кисломолочних продуктів, у виноробстві і т.п., але лише завдяки роботам Л. Пастера в середині 19 ст., що довели зв'язок процесів шумування з діяльністю мікроорганізмів, традиційна біотехнологія одержала наукову основу. У 40-50-ті роки 20 ст., коли був здійснений біосинтез пеніцилінів методами ферментації, почалася ера антибіотиків, що дала поштовх розвитку мікробіологічного синтезу і створенню мікробіологічної промисловості. У 60-70-ті р. 20 ст. почала бурхливо розвиватися клітинна інженерія. Зі створенням у 1972 групою П. Берга в США першої гібридної молекули ДНК in vitro формально пов'язане народження генетичної інженерії, що відкрила шлях до свідомої зміни генетичної структури організмів таким чином, щоб ці організми могли робити необхідні людині продукти і здійснювати необхідні процеси. Ці два напрямки визначили образ нової біотехнології, що має мало загального з тією примітивною біотехнологією, що людина використовувала протягом тисячоріч. Показово, що в 70-е рр. одержав поширення і самий термін "біотехнологія". З цього часу біотехнологія нерозривно пов'язана з молекулярною і клітинною біологією, молекулярною генетикою, біохімією і біоорганічною хімією. За стислий період свого розвитку (25-30 років) сучасна біотехнологія не тільки домоглася істотних успіхів, але і продемонструвала необмежені можливості використання організмів і біологічних процесів у різноманітних галузях виробництва і народного господарства.[5]

Біотехнологія застосовується навколо нас у багатьох предметах щоденного вжитку - від одягу, який ми носимо, до сиру, який ми споживаємо. Протягом століть фермери, пекарі та пивовари використовували традиційні технології для зміни та модифікації рослин та продуктів харчування - пшениця може слугувати давнім прикладом, а нектарин - одним з останніх прикладів цього. Сьогодні біотехнологія використовує сучасні наукові методи, які дозволяють покращити чи модифікувати рослини, тварини, мікроорганізми з більшою точністю та передбачуваністю.

Споживачі повинні мати можливість вибору з якомога ширшого переліку безпечних продуктів. Біотехнологія може надати споживачам можливість такого вибору - не лише в сільському господарстві, але також в медицині та паливних ресурсах.

Біотехнологія пропонує величезні потенційні переваги. Розвинуті країни та країни, що розвиваються, повинні бути прямо зацікавлені у підтримці подальших досліджень, спрямованих на те, щоб біотехнологія могла повністю реалізувати свій потенціал.

Біотехнологія допомагає довкіллю. Дозволяючи фермерам зменшити кількість пестицидів та гербіцидів, біотехнологічні продукти першого покоління призвели до зменшення їх використання в сільськогосподарській практиці, а майбутні продукти біотехнологій повинні принести ще більше переваг. Зменшення пестицидного і гербіцидного навантаження означає менший ризик токсичного забруднення грунтів та грунтових вод. Окрім того, гербіциди,які застосовуються в поєднанні з генетично модифікованими рослинами, часто є більш безпечними для довкілля, аніж гербіциди попереднього покоління, на зміну яким вони приходять. Культури, виведені методами біоінженерії, також ведуть до ширшого застосування безвідвальної обробки грунту, що в кінцевому рахунку призводить до зменшення втрат родючості грунту.[2]

Величезний потенціал біотехнологія має і в боротьбі з голодом. Розвиток біотехнологій пропонує значні потенційні переваги для країн, що розвиваються, де понад мільярд жителів планети живуть в бідності та страждають від хронічного голоду. Через зростання врожайності та виведення культур, стійких до хвороб та посухи, біотехнологія може зменшити брак їжі для населення планети, яке станом на 20025 рік складатиме понад 8 мільярдів чоловік, що на 30% більше ніж сьогодні. Вчені створюють сільськогосподарські культури з новими властивостями, які допомагають їм виживати у несприятливих умовах посух та повеней.

Біотехнологія допомагає боротися з хворобами. Розвиваючи та покращуючи медицину, вона дає нові інструменти у боротьбі з ними. Саме біотехнологія дала нам медичні методи лікування кардіологічних хвороб, склерозу, гемофілії, гепатиту, та СНІДу. Сьогодні створюються біотехнологічні продукти харчування, які зроблять дешевими та доступними для найбіднішої частини населення планети життєво необхідні вітаміни та вакцини.

Біотехнологія може привнести значні переваги у сферу охорони здоров'я. Збільшуючи поживну цінність їжі, біотехнологія може використовуватися для покращення якості харчування. Наприклад, зараз створюються сорти рису та кукурудзи з підвищеним вмістом білків. У майбутньому споживачі зможуть скористатися олією із зменшеним вмістом жирів, яку буде отримано з генетично модифікованих кукурудзи, сої, ріпаку. Крім того, генетична інженерія може використовуватися для виробництва продуктів харчування з підвищеним рівнем вітаміну А, що допоможе розв'язати проблему сліпоти у країнах, що розвиваються. Генетична інженерія також пропонує інші переваги для здоров'я, адже сьогодні створено методи, які дозволяють видаляти певні алергенні протеїни з продуктів харчування або уникати їх передчасного псування.