Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
R1.docx
Скачиваний:
15
Добавлен:
12.02.2016
Размер:
802.59 Кб
Скачать

1.4.3. Головки mig

Головки MIG (головки з металом в зазорі) були розроблені на основі композитних головок. У них додатковий зазор (2) (див. рис. 1.26) заповнювався металом, що знижувало схильність матеріалу осердя до насичення і дозволяло підвищити магнітну індукцію в робочому зазорі.

Ці головки дозволяють використовувати матеріали з більшою коерцитивною силою і тонкоплівковим робочим шаром. Вони формують на поверхні диска намагнічені ділянки з більш чіткими границями, що дозволяє використовувати тонший феромагнітний шар. До того ж, це дозволяє зменшити зони зміни знаку при намагнічені, а значить, і підвищити щільність запису. Пізніше з’явились двошарові MIG-головки, в яких метал нанесений в робочий і додатковий зазори. Це дозволило суттєво зменшити відстань між дисками і головками.

Переваги:

  1. зменшена відносно ІГ маса;

  2. менший робочий зазор;

  3. в MІG використовують підборну головку з заповненим зазором металізованим сплавом, індукція насичення якого в 2 рази більша ніж у феритів.

1.4.4. Тонкоплівкові (tf) головки

Тонкоплівкові (TF) головки (англ.: Thin Film Heads) з’явилися в 1979 році. Вони виготовлялись фотолітграфічним методом, подібно до мікросхем. На основу наносяться тонкі плівки майбутніх фрагментів головки. Таким способом отримуються набагато тонші головки з меншими технологічним і робочим зазорами (див. рис. 1.28). Це дозволило різко зменшити розмір головок і їх масу. На одну основу можна нанести декілька тисяч фрагментів осердя із залізо – нікелевого сплаву. Крім того, конструкція нового типу дозволила змінювати зазор (до 0,03мкм) між головкою і диском шляхом нарощування шарів алюмінієвого сплаву на робочу поверхню головки.

Переваги:

  1. зменшення величини зазору дозволяє підвищити залишкову намагніченість носія і щільність запису (індукція таких головок в робочому зазорі в 2-4 рази більша ніж індукція в ІГ і MІG-головці);

  2. підвищується відношення „сигнал-шум”, оскільки збільшується амплітуда сигналу;

  3. зменшується зона зміни знаку на робочій поверхні;

  4. алюмінієвий сплав попереджує пошкодження головки об поверхню диску;

  5. невеликі розміри головки дають змогу розмістити більшу кількість магнітних дисків..

1.4.5. Магніторезистивні (мr) головки

Магніторезистивні (МR) головки (англ.: Magneto - Resistive) вперше були застосовані фірмою ІВМ в 1991 році в накопичувачах ємністю 1 ГБ (див. рис. 1.29). Принцип роботи МR-головки базується на магніторезистивному ефекті зміни опору провідників в магнітному полі. При проходженні головки над ділянками робочого шару диску з різною залишковою намагніченістю електричний опір головки буде змінюватись. Цей ефект зміни опору в магнітному полі був відкритий Кельвіном в 1857 році.

1.4.6. Явище зміни магнітоопору

Якщо позначити питомий опір матеріалу без магнітного поля , а його питомий опір у магнітному полі з магнітною індукцієюВ, то магнітоопір (у відносних одиницях) зручно характеризувати величиною

(13)

В результаті, при накладанні напруги, на швидкий безладний рух електронного газу всередині металу накладається повільне зміщення електронів. Цей повільний дрейф і є електричним струмом. Приймають участь у цьому русі можуть не всі електрони, а лише та їх невелика частина, яка володіє енергією, близькою до максимальної (так званої енергії Фермі). Якщо таких електронів багато, то струм великий і, (відповідно) – опір малий і навпаки.

У явищі гігантського магніторезистивного ефекту визначальну роль відіграє орієнтація спіну електронів в зовнішньому магнітному полі. Магнітне поле всередині феромагнетику діє на електрони, збільшуючи або зменшуючи їх енергію в залежності від орієнтації їх спінів. Це приводить до зсуву енергії електронів і до зміни їх кількості біля енергії Фермі в залежності від орієнтації спіну (див. рис. 1.30).

Рис.1.30. Орієнтація спіну.

Внаслідок цього складається картина коли електричний струм у феромагнетику складається з двох різних, але ретельно перемішаних потоків – потоків електронів із спіном за напрямком намагніченості і проти. Електричний опір для цих потоків різний. Для електронів зі спінами, орієнтованими проти поля, він менший, ніж для електронів зі спінами, орієнтованими за полем. Особливо слід наголосити, що така картина специфічна лише для феромагнетиків.

Виготовлення шарів надрешітки – технологічно дуже складне завдання. Їх вирощують в глибокому вакуумі, напилюючи на основу шар за шаром потрібні речовини. Обидві речовини, а також сама основа повинні мати схожі кристалічні решітки, інакше шарування буде різноплановим, а це негативно вплине на протікання електричного струму. Напилення повинно бути рівномірним, щоб шари різних речовин накладались один на одного не перемішуючись. Також суттєве значення має і контроль магнітних властивостей зростаючих шарів.

Переваги:

  1. головка є не генератором електрорушійної сили, а резистивним датчиком магнітного поля;

  2. амплітуда вихідного сигналу в декілька разів більша ніж у TF-головки.

Недоліки:

  1. головка має додаткову обмотку для подачі високостабілізованого вимірного струму;

  2. головка дуже чутлива до зовнішніх магнітних полів, тобто вимагає екранування;

  3. використання в процесі виробництва додаткових 4-6 фотомасштабів (масок).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]