Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМП Теор.осн.сист.моб.связи.doc
Скачиваний:
186
Добавлен:
18.02.2016
Размер:
3.2 Mб
Скачать
  1. Оптимизация использования частотного диапазона и обработки сигналов в сотовой связи.

    1. Полосы частот сотовой связи. Принцип повторного использования частот.

Отведенная для приема/передачи полоса частот шириной:

■ для GSM 900: 960 - 935 = 915 - 890 = 25 МГц;

■ для GSM 1800: 1785 - 1710 = 1880 - 1805 = 75 МГц;

■ для GSM 1900: 1910 - 1850 = 1990 - 1930 = 60 МГц;

  • разнос дуплексных речевых каналов на частоте 900 МГц для GSM 900 — 200 кГц (рис. 2.3.1, б)

  • эквивалентная полоса частот на один физический речевой канал:

■ для GSM 900: 25 кГц;

■ для GSM 1800/1900: 12,5 кГц;

- число физических речевых радиоканалов в дуплесном радиоканале для GSM: 200/25 = 8 каналов (рис. 2.3, б);

  • число дуплексных речевых каналов — 124 (рис. 2.3, в).

В сотовой сети мобильной связи каждая из сот обслуживается своим передатчиком базовой станции BTS с небольшой выходной мощностью 50 Вт) и ограниченным числом каналов связи. Теоретически такие передатчики можно было бы ис­пользовать и в соседних сотах, если бы на практике соты не перекрывались под действием различных факторов, например, вследствие изменения условий распространения радиоволн. То есть, одни и те же частоты (каналы) могли бы повторно использоваться в различных со­тах, если бы влияние взаимных помех между мобильными абонентами было бы незначи­тельным.

Однако на практике взаимное влияние мобильных станций MS абонентов, имеющих одинаковые рабочие частоты, необходимо учитывать. Поэтому была разработана концепция повторного использования частот, то есть в каждой соте, показанной на рис.2.2, исполь­зуется определенная группа из w-канальных радиочастот.

Итак, повторное использование частот (frequency reuse) заключается в том, что в сосед­них сотах используются разные полосы частот F,, которые повторяются через несколько сот. Для понимания сущности принципа повторного использования частот рассмотрим не­сколько примеров построения моделей сотовой сети.

Пусть в некоторой сотеА (рис. 3.1) используется какая-то часть от полного диапазона частот, выделенного системе сотовой мобильной связи (например, для определенности одна десятая диапазона — 6Л = 1/10). Тогда в соседной с ней соте В должна использоваться вто­рая десятая часть диапазона бй= 1/10, поскольку вблизи общей границы в двух смежных со­тах нельзя использовать одни и те же частотные каналы. В соте С, имеющей общие границы с сотами А к В, придется использовать третью десятую часть диапазона (&с= 1/10). Но уже в соте D, имеющей общие границы с сотами А и С, но не имеющей общие границы с сотой В, вновь можно использовать ту же десятую часть диапазона Ьв = 1/10, что и в соте В, что условно обозначено D» В. Аналогично этому в сотах: Е —» A, F —» В, Н —» С, то есть полу­чаем сотовую структуру, состоящую из 3-х частотных (3-х элементных) групп, называемых кластерами (cluster), то есть группой сот с различным набором рабочих частот.

О

Рис.3.1 Сотовая сеть на основе принци­па повторного использования частот

чевидно, что 3-элементный кластер — этокластер минимально возможного размера, в ка­ждой из его сот можно использовать 1/3 от пол­ного диапазона рабочих частот, отведенных системе сотовой связи. При 3-элементном кла­стере соты с одинаковыми полосами частот по­вторяются очень часто, что плохо в смысле со-канальных помех (co-channel interference), то есть помех от радиостанций сотовой системы, работающих на тех же частотных радиоканалах, но в других сотах. В этом отношении более вы­годны кластеры с большим числом элементов.

В общем случае расстояние D между цен­трами сот, в которых используются одинаковые частотные группы (полосы частот), связано с числом N сот в кластере простым соотношением:

D = R·(3N)1/2,

где R — радиус соты (радиус окружности, опи­санной вокруг правильного шестиугольника).

Величину отношения D/R = q часто называ­ют коэффициентом уменьшения соканальных помех или коэффициентом соканального повто­рения..

Для величины 1/N = С, обратной числу сот в кластере, употребляют название: коэффициент эффективности повторного использования час­тот или просто коэффициент повторного ис­пользования частот. Введение этих величин позволяет записать выражение для D в виде:

D = R·(3/C)1/2.

Следует отметить, что увеличение числа элементов в кластере, выгодное с точки зрения

снижения уровня соканальных помех, приводит к пропорциональному уменьшению полосы час­тот, которая может быть использована в одной соте.

Поэтому практическичисло элементов в кла­стере должно выбираться минимально возмож­ным, обеспечивающим допустимое отношение сигнал/помеха.

В стандар­те GSM часто используются 7-элементные кластеры для создания сотовой сети мобиль­ной связи (рис.3.2).

В этих схемных примерах (рис. 3.2) предполагалось, что на базовых станциях BTS, расположенных в центрах идеаль­ных сот, используются всенаправленные антенны [(omnidirectional antennas) или просто omni], то есть излучение радиосигналов от базовых станцийдолжно было происходить с одинаковой мощностью во всех направлениях, что для абонентскихMS эквивалентно приему помех от всех базовых станций со всех направлений. Потому для снижения уровня помех в современных цифровых системах сотовой мобильной связи исполь­зуют в базовых станциях BTS направленные антенны, например, секторные антенны.

Н

Рис.3.2. 7-элементный кластер

апример сотовая сеть с 9-элементным кластером, которая получила доста­точно широкое распространение в цифровых стандартах сотовых мобильных сетей.В данной 9- кластерной модели соты разбиваются на секторы. В центре соты на базовой станции BTS установлено три направленные антенны, каждая из которых охватывает сек­тор в 120°. В каждом секторе соты радиосигнал от соответствующей направленной антенны излучается лишь в одном направлении. При этом уровень излучений в противоположных направлениях, а значит в двух секторах дан­ной соты, максимально снижается.Это обстоятельство позволяет располагать базовые станции BTS, работающие на одина­ковых частотах, еще ближе друг к другу, чем в модели рис. 3.1.

Специалисты корпорации Motorola (США) разработали еще более эффективную модель повторного использования частот. Разработанная ими со­товая сеть с 12 группами несущих частот, с применением 60º направленных антенн (то есть на базовой станции BTS устанавливает­ся 6 направленных антенн, главный лепесток диаграмм направленности которых излучает только в пределах своего 60° сектора).

Данная сотовая сеть позволяет увели­чить абонентскую емкость, то есть число абонентов, которых может обслужить сото­вая мобильная сеть, в 1,5 раза по сравнению со 120º направленными антеннами.

    1. Методы множественного доступа; варианты множественного доступа; множественный доступ с частотным разделением; множественный доступ с временным разделением; множественный доступ с кодовым разделением; пути повышения емкости системы сотовой связи.

Понятие «множественный доступ» (multiple access) связано с организацией совместного ис­пользования ограниченного участка частотного спектра многими пользователями. В настоя­щее время известны пять вариантов множественного доступа(в литературе также применяют понятие многостанционный доступ):

  • FDMA (Frequency Division Multiple Access) — множественный доступ с частотным разделением каналов связи;

  • TDMA (Time Division Multiple Access) — множественный доступ с временны разделением каналов связи;

  • CDMA (Code Division Multiple Access) — множественный доступ с кодовым разделе­нием каналов связи;

  • SDMA (Space Division Multiple Access) — множественный доступ с пространствен­ным разделением каналов связи;

  • PDMA (Polarization Division Multiple Access) — множественный доступ с поляризаци­онным разделением каналов связи.

Практический интерес для сотовой мобильной связи представляют первые три из них.

Четвертый метод фактически используется при реализации принципа повторного ис­пользования частот, в частности при делении сот на секторы с использованием направлен­ных антенн, но об этом не говорится как о методе множественного доступа.

Рис.3.3 Множественный доступ с частотным разделением каналов связи

Так как в стандарте GSM используется TDMA, частично в сочетании с FDMA, рассмот­рим первые два метода множественного доступа.

Метод FDMA — множественный доступ с разделением каналов связи по частоте, наиболее прост при реализации, так как в этом методе каждому пользователю на время се­анса связи выделяется своя полоса частот Δf (частотный канал), которую он использует всевремя (рис. 3.3).

Метод FDMA используется во всех аналоговых системах сотовой связи (первое поколение), при этом выделяемая полоса частот Δf со­ставляет 10...30 кГц. Основной не­достаток FDMA — недостаточно эффективное использование поло­сы частот, выделяемой для связи.

Рис. 3.4. Множественный доступ с временным разделением каналов связи

Метод TDMA — множест­венный доступ с разделением ка­налов связи по времени, состоит в том, что каждый частотный канал разделяется между пользователя­ми во времени — частотный канал по очереди предоставляется не­скольким пользователям на опре­деленные промежутки времени, то есть реализуется, например, не­сколько физических каналов в од­ном частотном. В качестве приме­ра на рис. 3.4 представлен слу­чай, когда каждый частотный ка­нал делится между тремя пользо­вателями.

Данная схема не соответствует чистому TDMA, а отражает сочета­ние FDMA и TDMA, так как здесь рассматривается случай не одного, а нескольких частотных каналов, каж­дый из которых делится во времени между несколькими пользователя­ми. Именно такая схема находит практическое применение в систе­мах сотовой мобильной связи и ее называют схемой TDMA.

Практическая реализация метода TDMA требует преобразования аналогового речевого сигнала в цифровую последовательность, которая подвергается кодированию и шифрова­нию, что необходимо для защиты информации от ошибок в процессе передачи и приема.

Многостанционный доступ с кодовым разделением (CDMA — Code Division Multiple Access) — технология, отличающаяся от доступа с час­тотным разделением и доступа с временным разделением . Она не использует для разделения каналов ни частоты, ни времени, хотя по многим признакам она напоминает частотный доступ (рис. 3.5).

Рис. 3.5. Упрощенная структурная схема системы с кодовым разде­лением каналов

Каждый входной цифровой сигнал складывается («модулируется») с отдельной «несущей», в качестве которой выступает псевдослучайная по­следовательность (ПСП). ПСП передается со скоростью большей, чем ско­рость исходного сигнала, после чего полученные сигналы объединяются в единый поток. При этом полоса частот, используемая в радиоканале, гораз­до шире, чем полоса исходного сигнала. Этот процесс получил название расширение спектра (Spreading Specter). Псевдослучайные последова­тельности выбираются таким образом, чтобы на приемном конце их мож­но было разделить (отфильтровать) и отделить сигнал от его псевдослучай­ной последовательности («несущей»). Передача единого объединенного потока осуществляется в одной полосе частот с помощью одного из видов фазовой манипуляции. Поэтому системы, основанные на CDMA, не требу­ют разделения полосы частот на отдельные каналы, что, в свою очередь, облегчает процесс хэндовера (переход из одной соты в другую).

Псевдослучайные последовательности должны иметь нулевую кор­реляцию, т. е. быть взаимонезависимы.

Существует два способа множественного (многостанционного) до­ступа с кодовым разделением каналов (CDMA):

  • ортогональный многостанционный доступ;

  • неортогональный многостанционный доступ, или асинхронный многостанционный доступ с кодовым разделением каналов.

Емкость системы сотовой связи, определяемая числом або­нентов, которых она может обслужить, - очень важная характери­стика, и значительная часть усилий при проектировании, создании и развитии системы в большинстве случаев направляется именно на обеспечение достаточно высокой емкости. Фактически и сама сотовая связь как таковая, основанная на принципе повторного ис­пользования частот, появилась в ответ на потребность в построе­нии системы массовой подвижной связи при использовании жест­ко ограниченной полосы частот. Перечислим четыре основных пути повы­шения емкости.

Первый - это совершенствование методов обработки сигна­лов, в частности, переход от аналоговой обработки к цифровой, сопровождаемый переходом к более совершенным методам мно­жественного доступа - От FDMA к TDMA и, вероятно, к CDMA, а в пределах TDMA - переход от полноскоростного кодирования речи к полускоростному, Пределом на этом пути являются, по-видимо­му, достижимые характеристики CDMA - это коэффициент порядка 20 (по числу физических каналов) при переходе от FDMA к CDMA.

Второй путь - дробление ячеек, т.е. переход к меньшим ячейкам в районах с интенсивным трафиком при том же коэффи­циенте повторного использования частот (рис.3.6); число базовых станций при этом соответственно увеличивается, а мощность из­л

Рис.3.6. Использование ячеек меньших размеров в районах с интенсивным трафиком (в центре города)

учения - как для базовых, так и для подвижных станций - снижа­ется. Фактически тот же эффект достигается и при использованиина базовых станциях секторных антенн, например с разделением ячейки на три сектора (при 120-градусных секторах) и использова­нием в каждом из секторов своей полосы частот. Прак­тически ячейки с радиусом менее 300...500 м неудобны, так как чрезмерно возрастает поток передач обслуживания. Выход про­сматривается в использовании многоуровневых (иерархических) схем построения сотовой сети с обслуживанием в крупных ячейках (макросотах) быстро перемещающихся абонентов (автомобили­стов), а в более мелких (микросоты, пикосоты) - малоподвижных абонентов, например покупателей в пределах торгового центра.

В качестве третьего пути повышения емкости отметим воз­можность использования адаптивного назначения каналов (Adaptive Channel Allocation - АСА) в методах FDMA и TDMA. До сих пор мы молчаливо предполагали, что имеющийся частотный ресурс, т.е. все частотные каналы в пределах выделенной полосы частот, заранее определенным образом распределяются между ячейками кластера - равномерно или в соответствии с априорной информацией об интенсивности трафика. Возможен, однако, и иной подход: частотные каналы, все или частично, находятся в оперативном распоряжении центра коммутации, который выделяет их для пользования отдельным ячейкам (базовым станциям) по ме­ре поступления заявок (вызовов), т.е. в соответствии с реальной интенсивностью трафика, но при соблюдении необходимого тер­риториально-частотного разноса. Такой адаптивный алгоритм, ко­нечно, сложнее, но он может обеспечить определенное повыше­ние емкости за счет гибкого отслеживания флуктуации трафика.

Четвертый путь - это тривиальное расширение вы­деляемой полосы частот. Разумеется, этот путь насколько очеви­ден, настолько же и мало полезен, и мы упоминаем о нем не в ка­честве рекомендации к непосредственному применению, а в виде примера преимуществ, например, GSM 1800 (или GSM 1900) по сравнению с GSM 900, которые имеют рабочие (аппаратурные) по­лосы 75 МГц (или 60 МГц) и 25 МГц соответственно.

    1. Организация дуплексного режима в системах мобильной связи; временное и частотное разделения в дуплексной связи.

Суммарный частотно-временной ресурс, отпущенный конкретной системе, приходится расходовать не только на организацию множественного(многостанционного) доступа, но и на обеспечение дуплексного режима, т.е. параллельного информационого обмена в обоих напровлениях: от системы к абоненту и в обратную сторону. В системах мобильной связи нашли применениечастотныйивременнойдуплекс. В первом варианте, упоминаемом в литературе какFDD(frequencydivisionduplex), дуплексная пара занимает две полосы частотΔfа(гдеΔfа– ширина полосы абоненского канала), разделённые некоторым защитным интервалом, называемым дуплексным разносом по частоте, т.е. передача и приём иформации между абонентами осуществляется на разных частотах (рис.3.7).

Рис.3.7. Принцип организации дуплексного разноса по частоте.

На основе FDDпостроены системы стандартов первого и второго поколений сотовой связи(AMPS,DAMPS,GSM,IS-95 и др.).

При временном дуплексе (TDD–timedivisionduplex) для двусторонней связи используется одна и та же несущая с временным разделением каналов передачи и приёма (рис.3.8). Хотя режимTDDнехарактерен для существующих систем сотовой связи,

Рис.3.8. Принцип организации дуплексного разноса по времени.

он широко распространён в стандартах бесшнурового телефона (СТ2, DECTи др.). Кроме того, ему отводится определённое место в стандартах третьего поколенияUMTSиCDMA2000.

Рассмотрим структуру каналов системы с TDDориентируясь наCDMA2000. Основным элементом канальной архитектуры БС является Тк= 20мс (рис.3.9), который разбивается на 8 пар интервалов, предназначенных для организации дуплекса.

Рис.3.9. Структура кадра канала связи сTDDсистемыCDMA2000.

Первый интервал пары имеет длительность Тти отводится для передачи. Во втором (длительности ТR) принимается сигнал МС. Любые смежные интервалы разделяются защитными промежутками длительности Δf, определяемой протяженностью зоны обслуживания. При защитном интервале в 52мкс и точности синхронизации временных интервалов на базовой станции ±3мкс, максимальный радиус зоны обслуживания составляет 14км.

Мобильные станции (МС) имеют одинаковую с БС структуру кадра, но интервалы передачи и приёма меняются местами.

    1. Узкополосная система с частотным разделением каналов (FDMA). Расчет числа пользователей. Нелинейные эффекты в системе связи FDMA.

Сравнение двух вариантов дуплексирования приводит к заключению, что режим FDMA более эффективен при больших размерах сот и высокой скорости передвижения абонентов.

При оценках емкости систем сотовой связи обычно используют модель системы с отказами (модель Эрланга B), в то время как модель системы с ожиданием (модель ЭрлангаС) применяют гораздо реже. Как видно из графиков на рис. 3.10, построенных для системы с количеством каналовN = 64 и средним трафикомА = [0...63], при малых вероятностях отказа в обслуживании, т. е. при малом трафике, обе модели дают достаточно близкие результаты. Однако при вероятности отказа в обслуживанииP > 0,1 в системе с ожиданиями вероятность отказа будет возрастать очень резко, что свидетельствуют о существенном ухудшении качества обслуживания. Поэтому на практике при анализе емкости системы связи расчеты проводят для вероятностей в диапазонеP = [0,01...0,05].

Анализируя вышеизложенное и опираясь на данные таблицы 4.1, можно сделать следующий вывод: с увеличением числа каналов, выделенных базовой станции, трафик, т. е. количество передаваемой информации, растет быстрее, чем число каналов, особенно при N < 30. Следовательно, рациональное построение системы сотовой связи должно преду-

сматривать выделение на одну ячейку (базовую станцию) не менее 30 частотных каналов

Рассмотрим пример использования системы с отказами (модель Эрланга B). В ее состав входят три основных параметра: число каналовN, трафикA и вероятность отказаPВ. Если известны любые два параметра, то можно однозначно определить третий.

Пример.

Условная городская агломерация занимает площадь S = 3300 км2и охвачена системой сотовой связи.

В системе используются кластеры из семи сот Nкл= 7.

Каждая сота имеет радиус r = 6 км.

Полоса шириной 24,5 МГц выделена системе, работающей в режиме частотного разделения каналов (FDMA/FDD). Ширина одного канала составляет 25 кГц. Предположим, что средняя продолжительность разговора в час пик Tср= 6 мин, средняя частота поступления вызовов λср= 1 вызов в час и вероятность отказа (блокировки) в сотовой системе составляетGOSВ = 0,02 (т. е. не более, чем два из ста абонентов в час получат отказ при первом обращении к сети).

Вычислим количество сот, охватывающих всю область.

Рассчитаем площадь одной гексагональной соты:

Рис.3.10 Вероятность отказа

в обслуживании в зависимости от трафика

при числе каналов N=64

.

Таким образом, для того, чтобы охватить весь город, требуется

Nc = 3300/93,53 = 35,28 ≈ 36 сот

Затем вычислим количество каналов, выделенных каждой соте. Поскольку в распоряжении системы находится полоса частот шириной 24,5 МГц, а одно соединение требует двух каналов (прямого и обратного) по 25 кГц каждый, то для 7-ми сотового кластера количество дуплексных каналов в соте будет равно

С = 2·4,5·106/( 7 ·2·25·103) ≈ 25 каналов.

Из выражения для GOSВможно найти, что дляС =25 каналов на соту и вероятности блокировкиGOSВ = 0,02 интенсивность трафика в одной соте составитАТЯ= 17,5 Эрл.

Поэтому суммарный трафик всей системы будет равен

АТЯ ·NС = 17,5·36 = 630 Эрл.

Трафик на одного абонента составит

ААБ= λср·Tср = 1·6/60 = 0,1 Эрл.

На основе этих значений определяется количество пользователей, которых может обслужить система. Это количество равно

NА =АТЯ/ААБ= 630/0,1 ≈ 6 300 пользователей.

Количество каналов системы мобильной связи можно определить делением ширины выделенного системе спектра на ширину пары каналов.

В данном примере

9 МГц/(2·25 кГц) = 180 каналов.

Тогда количество пользователей, приходящихся на один канал, равно

6 300/180 = 35 пользователей.

Максимальное количество пользователей, которые могут быть одновременно обслужены, определяется количеством каналов в соте и количеством сот в системе и будет равно

С · NС = 25·36 = 900 пользователей.

Следовательно, если все каналы во всех сотах будут одновременно заняты, то система сможет обслужить 900/6300 = 14,29 % пользователей. Можно сделать вывод о том, что благодаря идее транкинга ресурсы системы могут быть много меньше количества пользователей всей системы.

Сложный момент, который до сих пор не принимался во внимание, состоит в том, что пользователи во время разговора могут перемещаться из одной соты в другую. Если они пересекают границу соты, необходимо выполнять процедуру передачи соединения – хэндовер (англ. handover). В новой соте нужно найти новый канал и только после этого можно освободить канал в старой соте.

Следовательно, расчет трафика становится более сложным. Возможное решение этой проблемы – создание программной системы имитационного моделирования, которая учитывает перемещение подвижных станций и передачу соединений. Статистические свойства мобильности абонентов в сотах, охватывающих территорию городской застройки, отличаются от аналогичных характеристик сот, обеспечивающих покрытие незастроенной сельской местности с проходящей по ней автострадой.

Спектральный разнос абонентских каналов полностью ис­ключает влияние каналов друг на друга лишь теоретически. На практике же избежать возникновения межканальных (внутрисис­темных) помех невозможно, например, из-за неидеальности раз­делительных фильтров в приемнике, в результате которой часть энергии сигнала одного канала просачивается в соседний. Осла­бить влияние межканальных помех можно соответствующим вы­бором манипуляции сигналов (уменьшением "внеполосных" излу­чений) и фильтров (улучшением подавления в соседнем канале). Еще одним способом снижения уровня взаимных помех является введение защитных интервалов между частотными каналами, что, однако, приводит к уменьшению полосы частот, используе­мой для связи, т.е. снижению эффективности использования спектра.

Если положить Δfa = 1/Тб = Rt, где по-прежнему

Тб - длительность одного бита передаваемой информации, a Rt - скорость передачи информации, то возможное число ка­налов связи для FDMA-систем определится соотношением

К = Δfр/ Δfа= Δfр/ Rt

    1. Особенности систем с временным разделением каналов. Расчет числа пользователей. Системы с кодовым разделением каналов. Оценка числа пользователей.

Множественный доступ с временным разделением (МДВР или TDMA) в традиционном понимании заключается в том, что каждому абоненту системы на время сеанса связи выде­ляется временной интервал Та (временной канал) в пределах об­щего временного ресурса системы Тр (цикла или кадра системы), несовпадающий ни с одним из интервалов, уже предоставленных дру­гим активным абонентам. Тем самым каждый канальный сигнал размещается в своем индивидуальном окне (слоте) без перекрытия с другими (см. рис. 3.2, а). Вместе с тем спектры сигналов абонентов могут занимать всю выделенную системе полосу частот Δfp и пол­ностью перекрываться. Иллюстрацией подобного ресурсного рас­пределения служит рис. 3.11, б, из которого видно, что суммарный частотно-временной ресурс "нарезан" в виде К вертикальных полос, каждая из которых занимает весь доступный частотный диапазон и лишь К-ю часть отведенного времени.

Рис.3.11. Расположение канальных сигналов во времени (а), распределение частотно-временного ресурса между абонентами (б) и комбинация частотного и временного разделения FDMA/TDMA (в)

В идеале несовпадение канальных сигналов во времени обеспечивает их ортогональность, а значит, и исключает влияние друг на друга. На деле из-за ограниченности полосы системы пе­реходные процессы от сигналов предыдущих каналов к началу появления последующих могут не закончиться и, складываясь с последними, создавать перекрестные (межканальные) помехи. Уменьшить влияние соседних каналов, т.е. уровень межканаль­ных помех, удается способом, аналогичным описанному в преды­дущем подразделе, - введением защитных временных интерва­лов, что, в свою очередь, приводит к уменьшению временного диапазона, в течение которого возможна передача информации, т.е. к фактическому снижению скорости передачи.

Оценим возможное число TDMA-каналов. При скорости пе­редачи информации по одному каналу Rt за время одного циклаработы системы может быть передано RtTp бит информации.

Тогда общее количество информации, переданной во всех або­нентских каналах, составит величину KRtTp, где К = Тра. От­сюда длительность одного бита информации определится как

так что К = Δfp/Rt что полностью совпадает с оценкой числа каналов для систем с FDMA.

В цифровых стандартах второго поколения D-AMPS, GSM и PDC находит применение комбинация частотного и временного разделения FDMA/TDMA, в рамках которой каждый частотный канал разбивается на временные слоты. При этом каждому або­нентскому каналу выделяется лишь часть и частотного, и вре­менного ресурсов. Сказанное иллюстрирует рис. 3.12, в, из которо­го видно, что суммарный системный ресурс "нарезается" теперь не на полоски, а на прямоугольники, оба размера которых мень­ше максимально возможных. Проведя несложный расчет, подоб­ный проделанному для FDMA и TDMA, легко видеть, что их ком­бинация не может дать какого-либо теоретического выигрыша в числе каналов при фиксированном ресурсе, поскольку послед­ний жестко лимитирует число ортогональных сигналов. Основа­ния для практического использования сочетания FDMA/TDMA в большей мере связаны с технологической политикой отдельных производителей, нежели с какими-либо потенциальными пре­имуществами.

В основе множественного доступа с кодовым разделением (МДКР или CDMA) лежит ориентация на широкополос­ную (spread spectrum) идеологию построения систем передачи информации, предусматривающую сознательное и многократное расширение полосы передаваемого сообщения по сравнению с той, которая характерна для традиционных узкополосных сис­тем. Искусственное расширение спектра в подобных системах, как правило, реализуется одним из двух основных способов:

  • прямое расширение - direct sequence spread spectrum (DSSS);

  • скачкообразное изменение несущей частоты – frequency hop spread spectrum (FHSS).

В первом варианте информационное сообщение манипули­рует псевдослучайную последовательность (ПСП), состоящую из элементов (чипов) длительности Тс, причем длительность чипамногократно (в N-раз) меньше длительности Tб передаваемого информационного бита ипи символа (посылки): T6=NTc, N >> 1.

Величина N непосредственно характеризует степень рас­ширения полосы по сравнению с полосой первичного сообщения и потому называется коэффициентом расширения спектра (в анг­лоязычных текстах spreading factor или processing gain).

Упомянутая манипуляция ПСП c(t) передаваемым потоком данных D(t) обычно реализуется их простым перемножением (см. рис. 5.12, а). Диаграммы рис. 5.12, 6-г иллюстрируют содержа­ние процедуры прямого расширения для примера двоичной пе-

р

Рис.3.12 Процедура прямого расширения спектра для двоичной передачи и бинарной ПСП

едачи и бинарной ПСП. На рис. 5.12, в показана периодическая бинарная ПСП, чей период, содержащийN = 8 чипов, совпадает с длительностью одной посылки сообщения (в общем случае пе­риод ПСП может быть произвольным, в частности, значительно большим длительности информационной посылки; более того, ПСП вообще может быть апериодической). Результат прямого расширения очевиден (рис. 3.12, г): если информационная посыл­ка несет нулевой бит (положительная полярность D(t),рис. 5.12, б), на выходе перемножителя присутствует первона­чальная версия ПСП. При передаче посылкой значения 1 текуще­го бита полярность ПСП меняется на противоположную. Сигнал после перемножителя подается на стандартный модулятор несущей (БФМ, КФМ и т.д.).

Как можно видеть, процедура прямого расширения спектра не ухудшает помехоустойчивости двоичной передачи в гауссовском канале, оставляя противоположными сигналы, отвечающие значениям 0 и 1 передаваемого бита.

При использовании второго способа расширения спектра каждый символ информационного сообщения должен переда­ваться с помощью набора дискретных частот, задаваемого опре­деленной последовательностью. Подробное описание FHSS тех­нологии расширения спектра можно найти в литературе.

В существующих и разрабатываемых на перспективу сис­темах сотовой связи преимущественно применяется прямое рас­ширение спектра, реализуемое либо в синхронном, либо в асин­хронном варианте. Различия этих двух модификаций DSSS весь­ма значительны. Первая может быть применена тогда, когда есть возможность синхронизировать между собой все индивидуаль­ные адресные последовательности (сигнатуры), присвоенные отдельным абонентам так, чтобы на приемной стороне сигналы разных абонентов не имели взаимных временных сдвигов. По­добная ситуация характерна для линии "вниз" ССМС (от БС к МС), поскольку сигналы БС, посланные разным МС строго од­новременно, приходят на отдельную МС по одной и той же трас­се, т.е. без взаимных задержек.

В линии "вверх" обеспечение синхронизма сигналов разных МС, принимаемых БС, хотя и не отрицается теоретически, довольно затруднительно и не всегда технологически оправданно из-за случайного расположения МС относительно БС в пределах соты и, следовательно, случайных взаимных задержек сигналов. Для подобных ситуаций характерно применение асинхронной версии DSSS, не предполагающей взаимной временной привязки сигнатур индивидуальных абонентов.

Преимущества CDMA по отношению к FDMA и TDMA можно условно разбить на две группы. Первую из них составляют те, которые отличают любые широкополосные (spread spectrum) сис­темы: высокая помехоустойчивость к сосредоточенным и широ­кополосным помехам (в том числе преднамеренным), возмож­ность эффективной работы в условиях многолучевого распро­странения, широкий диапазон доступных мер криптозащиты, вы­сокая точность измерения частотно-временных параметров, хо­рошая электромагнитная совместимость с системами радиосвязи и вещания и др. Вторая группа непосредственно связана с аспек­тами множественного доступа: ббльшая абонентская емкость на соту (сектор), "мягкий" характер снижения качества связи при возрастании интенсивности трафика, простота реализации режи­ма "мягкой" эстафетной передачи.

Рассмотрим подробнее вопрос об оценке возможного числа пользователей в системах с кодовым разделением.

Оценка числа пользователей на соту

Синхронный вариант CDMA с использованием ортогональ­ных сигналов, разумеется, не может иметь каких-либо принципи­альных преимуществ по сравнению с FDMA и TDMA в макси­мальном числе пользователей, поскольку последнее есть попро­сту число ортогональных сигналов, лимитируемое только раз­мерностью сигнального пространства, т.е. частотно-временным ресурсом (Δр,Тр). Способ построения ортогонального семейства

(разнесение по частоте, времени или соответствующее кодиро­вание) не влияет на количество сигналов в семействе.

Асинхронный же вариант CDMA (как и синхронный при чис­ле абонентов, превышающем возможное число ортогональных сигналов) позволяет более гибко, чем FDMA и TDMA, эксплуати­ровать эффекты пространственного затухания радиоволн для повторного использования ресурса в системах с сотовой топологией.

При корреляционной обработке отношение "сигнал - сово­купная помеха" на выходе приемника системы с кодовым разде­лением может быть записано в виде

,

где NΣ и Nо - соответственно спектральные плотности мощности внутрисистемных помех и белого шума; Eб=PRT6 - энергия, приходящаяся на один бит информационного сообщения; PR - мощность абонентского сигнала на приемной стороне. С учетом обязательного в асинхронных системах с CDMA вырав­нивания мощностей абонентских сигналов на входе приемника спектральная плотность внутрисистемных помех, создаваемых К -1 посторонними пользователями, может быть оценена как

.

Данная оценка опирается на аппроксимацию взаимной по­мехи случайным шумом со средней мощностью (К -1)PR, равной сумме мощностей всех сторонних сигналов. Полагая внутрисис­темную помеху преобладающей над тепловым шумом (Nz >> N0), из (5.2) получаем qΔfp/(KRt), откуда оценка предельного числапользователей

.

Как можно видеть, при q не ниже 5...8 дБ (уровень превы­шения полезным сигналом помехи, достаточный для достижения вероятности ошибки на символ в пределах тысячных долей) мак­симальное число абонентов, обеспечиваемое рамками CDMA, заметно меньше, чем при использовании FDMA и TDMA. Учтем теперь, что в форматах FDMA и TDMA запрет на по­вторное использование каналов в примыкающих сотах вынуждает дробить ресурс между ячейками одного и того же кластера. Следствием этого является уменьшение числа абонентов на соту в пс раз, где пс - количество ячеек в кластере. Так, при весьма типичном 7-элементном кластере (см. рис. 2.3, 6) удель­ное число абонентов на соту составит

. (3.1)

В то же время при технологии CDMA можно пойти на повторное использование всего доступного ресурса в соседних сотах, пла­той за что окажется увеличение уровня внутрисистемных помех, создаваемых теперь не только сигналами своих (обслуживаемых данной ячейкой) абонентов, но и сигналами абонентов "чужих" БС. При этом вклад "просачивания" из соседних ячеек в суммар­ную взаимную помеху может оказаться заметно слабее состав­ляющей, обусловленной "своими" (а значит, более близкими к БС) абонентами, за счет крутого спада принимаемой мощности в зависимости от расстояния (обратно пропорционально пример­но четвертой степени расстояния для зон плотной городской за­стройки или густой растительности). По оценкам мно­гих источников "соседние" ячейки увеличивают общий уровень взаимной помехи примерно в 1,5 раза. Отсюда сотовая емкость CDMA системы может быть оценена как , что

при q ≈ 2,5 (8 дБ) дает

.

Из этих отношений следует, что CDMA обладает почти двукратным выигрышем по этому показателю по отношению к FDMA и TDMA.

В том же направлении действует и учет фактора речевой активности пользователя. Дело в том, что в обычном телефонном разговоре каждый из участников тратит определенную часть вре­мени на паузы, выслушивая собеседника и осмысливая содержа­ние диалога. Фактор речевой активности ар численно задает до­лю именно речевой фазы одного участника в общей продолжи­тельности соединения. Стандарт GSM уже определенным обра- зом эксплуатирует рассматриваемый фактор, однако исключи­тельно в целях энергосбережения, но не увеличения абонентской емкости. Хотя теоретически такая возможность не исключается, на деле мгновенная передача освобождающегося в паузе физи­ческого частотного или временного канала другому абоненту с последующим возвратом вряд ли заслуживает реализации в силу резкого усложнения протоколов и невозможности согласо­вания пауз в разговорах индивидуальных абонентов. В рамках же CDMA высвобождение ресурса в паузах разговора автоматически снижает уровень взаимной помехи и тем самым способствует увеличению емкости системы.

В первом приближении можно учесть фактор ар, заменивспектральную плотность мощности внутрисистемной помехи зна­чением, усредненным по всей продолжительности разговора N'Σ= apNΣ . Тогда с учетом (3.1) оценка числа абонентов на сотупримет вид

.

При типичном значении фактора речевой активности ар = 3/8

,

что в сравнении с (3.1) означает более чем четырехкратный вы­игрыш в абонентской емкости по сравнению с FDMA и TDMA технологиями.

В некоторых источниках приводятся еще более впечат­ляющие цифры, подтверждающие достоинства CDMA. Обычно они базируются на предположении о секторизации соты, естест­венно увеличивающей сотовую емкость в число раз, соответст­вующее количеству секторов. Не следует забывать, однако, что выигрыш за счет секторизации реализуем в рамках всех тех­нологий множественного доступа и поэтому должен исключаться при корректном их сопоставлении.

Отметим, что полученные выше оценки являются всего лишь первичными ориентирами, поскольку опираются на много­численные приближения и допущения. Реальное проектирование CDMA-систем должно опираться на более глубокий анализ, с необходимостью сопровождаемый всесторонним моделирова­нием и полевыми испытаниями.

    1. Организация физических и логических каналов; типы логических каналов; структура логических каналов связи и управления; организация физических каналов.

Кроме собственно информации речи по каналу связи должна передаваться так называемая сигнальная (signalling) информация, включающая информацию управления и информацию контроля состояния аппаратуры. Ниже под сигналь­ной информацией будем понимать управляющую информацию. Каналы связи в стандарте GSM можно разделить на (рис. 3.13): частотные; физические; логические каналы.

Рис. 3.13. Частотные, физические и логические каналы в стандарте GSM

Частотный канал — это полоса частот, отводимая для передачи информации по одному ка­налу связи.

При использовании метода TDMA, в одном частотном канале размещается 8 каналов связи, то есть 8 физических каналов.

Это не противоречит приведенному определению частотного канала.

Один частотный канал занимает полосу Δf = 200 кГц, так что всего в полном диапазоне с учетом защитных полос размещается (45/0,2- 1) = 124 частотных канала.

Центральная частота канала (в МГц) связана с его номером N отношениями:

  • канал MS => BSS: f1 = 890,200 + 0,200·N, где 1 < N < 124;

  • канал BSS => MS: f 2 = 935,200 + 0,200·N, где 1 < N <124.

Отметим, что один частотный канал, строго говоря, занимает две полосы Δf = 200 кГц, одну под канал MS =>BSS, а другую — под канал связи BSS=>MS.

При использовании режима работы со скачками по частоте SFH для передачи информа­ции одной и той же группы физических каналов последовательно во времени используются различные частотные каналы.

Физический канал в системе TDMA — это временной слот с определенным номером в по­следовательности кадров радиоинтерфейса.

В стандарте GSM передается информация 8 физических каналов при полноскоростном кодировании, но при полускоростном кодировании один физический канал содержит два канала трафика, информация которых передается по очереди, через кадр, то есть при этом реализуется временное уплотнения каналов в 8 раз при полноскоростном кодировании и в 16 раз — при полускоростном.

В этом и состоит одно из основных преимуществ цифрового поколения сотовой мо­бильной связи по сравнению с аналоговым.

Итак, физический канал образуется путем комбинирования временного и частотного разделения сигналов и определяется как последовательность радиочастотных каналов (с возможностью скачков по частоте) и временных интервалов кадров TDMA.

Каждая несущая содержит 8 физических каналов, размещенных в 8-ми временных ин­тервалах в пределах кадра TDMA. Каждый физический канал использует один и тот же вре­менной интервал в каждом кадре TDMA.

До формирования физического канала сообщения (речевой сигнал) и данные, представ­ленные в цифровом виде, группируются и объединяются в логические каналы.

Логические каналы различаются по виду информации, передаваемой в физическом канале. В принципе, в физическом канале может быть реализован один из двух видов логических каналов:

  • трафика (канал связи) — для передачи кодированной речи и данных;

  • управления (signalling) — для передачи сигналов управления и сигнализации, каждый из них, в свою очередь, может в общем случае существовать в одном из нескольких вариантов (типов).

Структура логических каналов стандарта GSM в упрощенном виде приведена в табл. 3.1. Рассмотрим последовательно виды логических каналов и типы каналов в пределах вида.

Таблица 3.1. Виды логических каналов и типы каналов

Виды логических каналов Типы каналов в пределах видов

Каналы трафика TCH TCH/FS FCH/HS

ВССН: FCCH, SCH

Каналы управления ССН СССН: РСН, RACH, ASCH, SDCCH АССН: FACCH, SACCH

1.Каналы трафика TCH (Traffic CHannel) делятся на:

  • полноскоростные TCH/FS (Full Speech);

  • полускоростные TCH/HS (Half Speech), по виду передачи речевых сигналов (speech).

канал передачи речевых сигналов с полной скоростью TCH/FS — 22,8 кбит/с, по­лускоростной TCH/HS —11,4 кбит/с.

2. Каналы управления ССН (Control CHannel) делятся на 4 типа:

  • вещательные каналы управления ВССН (Broadcast Control CHannel);

  • общие каналы управления СССН (Common Control CHannel);

  • выделенные закрепленные каналы управления SDCCH (Standalone Dedicated Control CHannet);

  • совмещенные каналы управления АССН (Associated Control CHannet).

Каналы ВССН предназначены для передачи информации от BSS и MS в вещательном режиме, то есть без адресации к какой-либо конкретной MS. В число вещательных каналов управления ВССН входят:

  • канал коррекции частоты FCCH (Frequency Correction CHannel), необходимый для подстройки частоты мобильной станции MS под частоту базовой BTS;

  • канал синхронизации SCH (Synchronization CHannel), используемый для кадровой синхронизации мобильных станций MS, а также канал общей информации, не имею­щий отдельного названия.

Общие каналы управления СССН включают:

  • канал вызова РСН (Paging CHannel), используемый для вызова мобильной станции MS;

  • канал разрешения доступа AGCH (Access Grant CHannel), необходимый для назначе­ния закрепленного канала управления, информация которого также передается от ба­зовой станции на мобильную MS;

  • канал случайного доступа RACH (Random Access CHannet), служащий для выхода с мобильной станции MS на базовую BTS с запросом о назначении выделенного канала управления. При передаче информации по каналам СССН прием информации не со­ провождается подтверждением.

Выделенные закрепленные каналы управления SDCCH (используемые в двух вариан­тах, не отраженных в табл. 3.1) являются автономными каналами управления для передачи информации с BSS на MS и в обратном направлении.

Совмещенные каналы управления АССН, также используемые для передачи информа­ции в обоих направлениях (MS<»BSS) и имеющие несколько вариантов (не отраженных в табл. 3.1), включают:

- медленный совмещенный канал управления SACCH (Slow Associated Control CHan­nel), который используется в прямом канале (BSS=>MS) для передачи команды на установку выходного уровня мощности передатчика мобильной станции MS, а в обрат­ном (MS=>BSS) — для передачи данных об уровне установленной мощности. Канал SACCH объединяется с каналом трафика (кадр 13 из мультикадра канала трафика) или с каналом SDCCH);

- быстрый совмещенный канал управления FACCH (Fast Associated Control CHannet), который используется для передачи команд при переходе мобильной станции из соты в соту, то есть при эстафетной передаче. Канал FACCH совмещается с каналом тра­фика, заменяя в соответствующем слоте информацию речи, причем эта замена поме­чается скрытым флажком

    1. Основные принципы компенсации искажений сигналов; разнесенный прием.

При анализе и расчете зон действия БС и решении ряда других задач существенную роль играет учет особенностей распространения радиоволн УКВ- и СВЧ-диапазонов в городских и пригородных условиях. К ним относятся, прежде всего, многолучевое

распространение, вызываемое случайными и многократными отражениями от зданий и других объектов городской застройки, а также рассеиванием радиоволн этими объектами. В результате суммирования различных лучей на приемной стороне радиолинии возникают случайные амплитудные и фазовые флуктуации, вызывающие явления замирания сигнала. Распределение огибающей такого сигнала подчиняется закону Рэлея, а величина замираний относительно среднего уровня составляет > 40 Дб.

Одним из основных путей борьбы с замиранием является использование методов разнесенного приема. Эти методы предполагают наличие нескольких разделенных трактов передачи с независимыми замираниями, по которым передается одно и то же

сообщение. Средние уровни сигналов, передаваемых по каждому тракту, должны быть также примерно одинаковы. При соответствующем комбинировании сигналов, поступающих из трактов передачи, формируется результирующий сигнал, имеющий гораздо меньшую глубину замирания и обеспечивающий соответственно большую надежность передачи.

В последнее время в этих же целях начинает применяться медленная псевдошумовая перестройка рабочей частоты. Кроме того, эффективным средством борьбы с замираниями является внедрение широкополосных цифровых систем подвижной связи с шумоподобными сигналами, ожидаемое в самое ближайшее время.

    1. Использование широкополосных сигналов.

Свое название широкополосные системы связи получили вследствие того, что полоса, зани­маемая используемыми в них сигналами, намного шире полосы, необходимой для передачи непосредственно информации. Одной из первых таких систем, по-видимому, являлась раз­работанная в конце 1950-х гг. система «Рейк» [7.1]. В этой системе за счет использования метода широкополосной передачи удалось обеспечить устойчивую связь в условиях много­лучевого распространения. Методы широкополосной передачи позволили осуществить раз­деление нескольких лучей с различным запаздыванием и тем самым устранить эффект за­мирания сигналов, вызванный многолучевым распространением. В специальных системах методы широкополосной передачи позволяют организовать устойчивую передачу информа­ции в условиях действия преднамеренных помех, мощность которых на входе приемника может превышать мощность полезных сигналов в сотни и тысячи раз. Кроме того, в таких системах использование методов широкополосной передачи позволяет затруднить средст­вам радиоразведки обнаружение факта передачи, т.е. повысить ее скрытность. В сотовых и спутниковых системах связи (см. гл. 6) методы широкополосной передачи позволяют обес­печить одновременную работу многих пользователей в общей полосе частот, т.е. реализо­вать метод многостанционного доступа, основанный на разделении сигналов по форме (Code Division Multiple Access, CDMA).

В системах радиолокации использование методов широкополосной передачи позволяет повысить точность измерения дальности до цели при прочих равных условиях, а также пре­одолеть известное противоречие между дальностью действия локатора и его разрешающей способностью

Среди методов широкополосной передачи в цифровых системах связи наибольшее рас­пространение получили два метода. Первый метод расширения спектра основан на ис­пользовании псевдослучайных последовательностей (ПСП). Такие сигналы обычно называ­ют широкополосными (ШПС), или шумоподобными. Наиболее полное изложение теории и техники шумоподобных сигналов можно найти в работах Л. Е. Варакина .

Укрупненная функциональная схема (модель) цифровой системы связи с ШПС приве­дена на рис. 3.14.

Функции, выполняемые кодером и декодером в этой модели, обсуждались в предыду­щих разделах, хотя использование кодирования, как будет ясно из дальнейшего, в широко­полосных системах имеет определенные особенности. Генераторы ПСП на передающей и приемной сторонах идентичны. Именно они сначала применяются для расширения спектра

передаваемых по каналу связи сигналов, а затем перед демодуляцией для его сжатия. Для расширения спектра в такой схеме применяют фазовую манипуляцию, а получаемые при этом сигналы, как это отмечено выше, нередко называют ФМ ШПС. Информационная ма­нипуляция также фазовая, хотя возможна и произвольная. В модуляторе сначала осуществ­ляется перемножение кодированных символов с ПСП (расширение спектра), а затем непо­средственно фазовая манипуляция.

Рис. 3.14. Модель цифровой системы связи с ШПС

Второй часто используемый метод широкополосной передачи основан на псевдослу­чайной перестройке рабочей частоты сигнала (ППРЧ).

Укрупненная функциональная схема (модель) цифровой системы связи с ППРЧ приве­дена на рис. 3.15.

Рис. 3.15. Модель цифровой системы связи с ППРЧ

Отличаются две схемы тем, что во второй расширение спектра осуществляется не за счет перемножения кодированной информации с ПСП, а за счет вырабатываемой синтеза­тором и перестраиваемой по псевдослучайному закону рабочей (несущей) частоты моду­лятора.

На приемной стороне производится обратное преобразование, что приводит к сжатию спектра перед демодуляцией. При ППРЧ информационная манипуляция также может быть произвольной, хотя следует отметить, что в этом случае в моменты смены частот могут на­блюдаться случайные скачки начальной фазы несущей, поэтому может потребоваться неко­герентная демодуляция, а это заметно снижает эффективность кодирования.

Отметим, что сжатие спектра принимаемого сигнала происходит только в том случае, когда система синхронизации приемника совместит по времени и по частоте принимаемый сигнал и опорный сигнал, вырабатываемый местным генератором ПСП.

Как следует из модели цифровой системы связи с ШПС, расширение спектра передавае­мых в канал связи сигналов осуществляется за счет перемножения или, что то же, сложе­ния по mod 2 кодированной (или некодированной, если кодирование не используется) ин­формации с ПСП.

Наибольшее распространение в действующих системах получили двоичные ПСП, сим­волы которых принимают значения 0 и 1 Как уже отмечалось в гл 6, ШПС, используе­мые в широкополосных системах, характеризуются параметром, который называют базой сигнала В База определяет степень расширения спектра сигнала и количественно определя­ется числом символов ПСП, укладывающихся на длительности информационного (или ко­дированного) символа или, что то же, произведением полосы F, занимаемой спектром ШПС, на длительность информационного (или кодированного) символа Т . Для ШПС

В >> 1, в то время как в системах без расширения спектра В << 1, а сигналы называют простыми, или узкополосными

Основное требование, которому должны удовлетворять ПСП в широкополосных систе­мах, вытекает из их названия Это псевдослучайность, или шумоподобность Такие свойст­ва ПСП, например, как «хорошая» автокорреляционная функция (АКФ), тес малыми боко­выми лепестками, или наиболее равномерный амплитудный спектр, являются производны­ми от их псевдослучайности. Такими же свойствами обладает достаточно длинная реализа­ция БГШ. Ее АКФ представляется в виде δ-функции Дирака, энергетический спектр — рав­номерный

Рассмотрим, каким требованиям должны удовлетворять ПСП, чтобы их можно было бы использовать в качестве основы для построения ШПС.

Первоначально критерием для поиска «хороших» последовательностей являлся минимум боковых лепестков их апериодических АКФ. В наилучшей степени этому критерию удовле­творяли двоичные последовательности (коды) Баркера. Было найдено только шесть после­довательностей Баркера длины N= 3, 4, 5, 7, 11, и 13. Поиски последовательностей Баркера большей длины успехом не увенчались. Из-за относительно малой длины,последовательности Баркера широкогоприменения в действующих широкополосных системах практически не нашли. Однако такие сигналы используются в беспроводных технологиях, например в Wi-Fi используется 11-ти элементная последовательность в защищённом режиме.

Наиболее широкое применение в широ­кополосных системах связи нашли так называемые М-последовательности. Как правило, используются двоичные М-последовательности. Формируются М-последовательности многотактными линейными фильтрами в виде ре­гистров сдвига с обратной связью.

Рассмотрим за счет каких действий допустимое число одновременно действующих ка­налов при использовании ШПС можно увеличить.

Известно, что в подвижных системах связи основным видом предоставляемых услуг яв­ляется телефонная связь, а основным источником информации — речь. Также хорошо из-вестно, что в занятом телефонном канале передача речевых сигналов занимает не более 1/3 времени и примерно 2/3 времени приходится на паузы. При выключении или значительном снижении мощности излучения во время пауз в речи при телефонном разговоре мощность взаимных помех будет снижаться пропорционально времени пауз. За счет этого допустимое число одновременно действующих каналов, а следовательно, и пропускная способность системы может быть в два-три раза увеличены. Дополнительной полосы в данном случае не требуется. Также в два-три раза увеличивается и эффективность использования спектра, занимаемого системой с ШПС.

В системах связи с простыми сигналами и частотным разделением за счет этого повы­шается эффективность использования мощности передатчика ретранслятора или базовой станции. Однако эффективность использования полосы не повышается, так как выделенная каждому абоненту на время сеанса полоса частот сохраняется за ним даже в паузах речи.

С учетом этого пропускная способность системы с ШПС может быть определена сле­дующим выражением:

,

где: а и (1/2-1/3) — коэффициент активности абонента; F- общая ширина спектра широкополосного сигнала; R- скорость передаваемой информации; N0- спектральная мощность БГШ; N - суммарная спектральная мощность взаимной помехи и БГШ; Eб- энергия, приходящая на один бит передаваемой информации.

Другая особенность систем радиосвязи с ШПС связана с использованием в ретрансляторе или на базовой станции узконаправленных многолучевых антенн. Известно, что примене­ние таких антенн позволяет упростить требования к наиболее массовым земным станциям, уменьшить ограничения на пропускную способность системы по полосе за счет повторного использования частот в разных лучах. Однако из-за «неидеальности» диаграмм направлен­ности антенн в системе связи с L лучами и простыми сигналами одну и ту же частоту можно использовать не чаще чем L/3 или L/7 раз, а в соседних лучах должны использоваться раз­ные полосы частот. В случае ШПС разнос частот сигналов в разных лучах не требуется, а мощность помехи от сигналов из соседних лучей, даже «незначительно» подавленная за счет многолучевых бортовых антенн с «неидеальными» диаграммами направленности, оказывается значительно меньше мощности взаимных помех от мешающих сигналов своего луча. Далее помехи будут подавлены за счет кодового разделения ШПС. Таким образом, эффективность использования спектра в системе с ШПС может значительно превысить эффективность применения спектра в системе с частотным разделением.

Дополнительное увеличение эффективности использования спектра примерно на 60% достигается за счет возможного разделения сигналов по поляризации. Известно [7.10], что в подвижных спутниковых станциях трудно подавить сигнал с нежелательной поляризаци­ей более чем на 6 дБ. Этого совершенно не достаточно для разделения сигналов в системах с частотным или временным разделением. Для систем с ШПС и такое подавление приводит к заметному снижению взаимных помех, что также повышает эффективность использова­ния спектра, хотя следует отметить, что широкого применения на практике этот метод пока не нашел.

В мобильных системах связи с простыми сигналами эффективность использования спектра снижается за счет того, что при большой неопределенности по доплеровским сме­щениям частоты и изменениях времени прихода принимаемых сигналов для снижения вза­имных помех приходится вводить защитные интервалы по частоте или по времени. В систе­мах с ШПС защитные интервалы не требуются.

В приведенных выше положениях предполагалось, что все приходящие на ретранслятор сигналы имеют одинаковую мощность. В случае разных мощностей пропускная способ­ность системы резко снижается. Разброс мощностей на 3 дБ приводит к уменьшению эффективности примерно в два раза. Поэтому регулировка мощностей абонентских станций с целью выравнивания мощностей сигналов, приходящих на ретранслятор, в системе с ШПС обязательна.

В системах связи с простыми сигналами эффективность использования спектра допол­нительно снижается за счет того, что при большой неопределенности частоты, вызванной эффектом Доплера, и изменениях времени прихода принимаемых сигналов для снижения взаимных помех приходится вводить защитные интервалы по частоте. В системах с ШПС защитные интервалы не требуются. В результате эффективность использования спектра в системе с ШПС оказывается значительно выше, чем в системах с простыми сигналами.

В системах спутниковой связи с малыми станциями имеют место замирания, обусловленные многолучевым распространением радиоволн. Малые антенны земных станций имеют широ­кие диаграммы направленности и поэтому не могут разделить прямой и отраженные лучи. В случае ШПС, принимаемые по различным лучам сигналы, могут быть разделены, а резуль­тирующий сигнал не подвержен замираниям, вызываемым многолучевым распространением. При приеме сигналы разделенных лучей могут выделяться и когерентно складываться. Экспе­рименты показали, что в реальных условиях энергетический выигрыш от реализации ШПС при многолучевом распространении составил 6-9 дБ.

Достоинством систем связи с ШПС признается также хорошая электромагнитная совмести­мость с существующими радиосредствами. Так, применение станций с малыми антеннами предполагает увеличение эквивалентной изотропно-излучаемой мощности (ЭИИМ) ретранс­лятора. Расширение спектра позволяет соблюсти установленные нормы на спектральную плотность потока излучаемой мощности. Станции с ШПС могут работать на вторичной ос­нове в общем частотном диапазоне с существующими узкополосными средствами.

Применение ШПС открывает возможность построения эффективных спутниковых систем связи с прямой ретрансляцией сигналов абонентских станций. В системах с простыми сигна­лами при частотном разделении каналов передатчик ретранслятора должен находиться в ли­нейном режиме, в противном случае нелинейные продукты третьего порядка могут поразить отдельные частотные каналы. При этом средняя мощность передатчика на 3-6 дБ ниже мощ­ности насыщения. При использовании ШПС и выравнивании уровней сигналов на входе ретранслятора переход в нелинейный режим передатчика также приводит к образованию не­линейных продуктов, но они, как правило, не представляют опасности для систем с кодовым разделением, поэтому пропускная способность системы с ШПС может быть увеличена в два-три раза за счет перевода передатчика ретранслятора в режим, близкий к нелинейному

Контрольные вопросы

1.В чем заключается принцип повторного использования частот в СМС?

2.Назовите диапазоны частот, используемые в сотовых системах связи?

3.Перечислите основные методы доступа в сотовых системах связи?

4.В чём суть частотного метода доступа?

5.В чём суть временного метода доступа?

6.В чём суть кодового метода доступа?

7.Что такое дуплексный режим связи?

8.Назовите основные методы использования широкополосных сигналов?

9.Как определяется число пользователей в различных системах доступа?

10.Дайте сравнительную характеристику основных методов доступа?

11.Основные принципы искажений сигналов при многолучевом распространении?

12.Типы логических каналов?

13.Перечислите основные пути повышения емкости систем сотовой связи?

  1. Цифровая обработка сигналов в СМС.

    1. Роль и построение цифровой обработки; характеристики речевых сигналов. Аналого-цифровое преобразование. Сегментация и кодирование речи. Канальное кодирование и перемежение.

Цифровая обработка сигналов - важный элемент в аппаратурной реализации принципов сотовой связи. Именно цифровая обработка обеспечила возможность перехода от первого поколения сотовой связи ко второму с соответствующим совершенствованием методов множественного доступа, повышением емкости системы, улучшением качества связи. Только в цифровой форме оказывается возможным применение экономичного (с устранением избыточности) кодирования речи, эффективного канального кодирования с высокой степенью защиты от ошибок, совершенных методов борьбы с многолучевым распространением.

Цифровую обработку сигналов можно разделить на два этапа:

- аналого-цифровое преобразование сигналов;

- кодирование речи.

Каждому из этапов обработки в передающем тракте соответствует этап обработки в приемном тракте, так что в идеализированной ситуации - при отсутствии шумов, помех и искажений при обработке и распространении сигналов - форма сигнала в соответствующих точках передающего и приемного трактов, например на выходе кодера речи и на входе декодера речи, на выходе АЦП и на входе ЦАП, тождественна. Реально этой тождественности не получается, но обработка сигналов должна быть построена таким образом, чтобы искажения не превышали допустимых пределов.

Аналого-цифровое преобразование является первым этапом цифровой обработки сигналов в передающем тракте. Работа АЦП складывается из двух этапов, которые в реальном устройстве часто не могут быть четко отделены один от другого: дискретизации входного непрерывного сигнала во времени обычно с постоянным шагом, т.е. через равные интервалы времени, и квантования величины сигнала по уровню для этих дискретных моментов времени. В результате на выходе АЦП появляются двоичные числа, т.е. наборы единиц и нулей, соответствующие уровням сигнала в моменты дискретизации.

В соответствии с теоремой Котельникова, частота дискретизации должна быть по крайней мере вдвое выше наибольшей частоты в спектре обрабатываемого сигнала. Поскольку, как указывалось в предыдущем разделе, при передаче сигналов речи по телефонным каналам связи ограничиваются полосой частот от 300 до 3400 Гц, общепринятой является частота дискретизации fд= 8 кГц.

В результате на выходе АЦП получается поток 8-битовых чисел, следующих с частотой 8 кГц, т е. поток информации на выходе АЦП составляет 64 кбит/с. Практические схемы АЦП чаще всего строятся на основе сравнения выборок мгновенных значений аналогового сигнала с набором эталонов, каждый из которых содержит определенное число уровней квантования.

В схемах ЦАП, как правило, используется формирование аналоговых величин (токов), пропорциональных весовым коэффициентам разрядов входного двоичного кода, с последующим суммированием в разрядах кода, содержащих единицы.

Кодирование речи. Кодер речи является первым элементом собственно цифрового участка передающего тракга, следующим после АЦП. Основная задача кодера (англ. термин encoder) - предельно возможное сжатие сигнала речи, представленного в цифровой форме, т.е. предельно возможное устранение избыточности речевого сигнала, но при сохранении приемлемого качества передачи речи. Компромисс между степенью сжатия и сохранением качества отыскивается экспериментально, а проблема получения вьюокой степени сжатия без чрезмерного снижения качества составляет основную трудность при разработке кодера. В приемном тракге перед ЦАП размещен декодер речи, задача декодера (англ. термин decoder) - восстановление обычного цифрового сигнала речи, с присущей ему естественной избыточностью, по принятому кодированному сигналу. Сочетание кодера и декодера называют кодеком (англ. термин codec).

Прежде чем перейти к рассмотрению кодеров речи, используемых в сетях радиодоступа, приведем некоторые общие сведения об основных методах кодирования.

Исторически сложилось два направления кодирования речи: кодирование формы сигнала (waveform coding) икодирование источника сигнала(source coding).

Первыйметод основан на использовании статистических характеристик сигнала и пракгически не зависит от механизма формирования сигнала. Кодеры этого типа с самого начала обеспечивали высокое качество передачи речи (хорошую разборчивость и натуральность речи), но отличались меньшей по сравнению со вторым методом экономичностью. В методе кодирования формы сигнала используются три основных способа кодирования: импульсно-кодовая модуляция HKIVI (Pulse Code Modulation - PCM), дифференциальная ИКМ - ДИКМ (Differential PCM - DPCM) и дельта-модуляция ДМ (Delta Modulation - DM). ИКМ соответствует цифровой сигнал непосредственно с выхода АЦП, в нем сохраняется вся избыточность аналогового речевого сигнапа. При ДИКМ эта избыточность несколько уменьшается за счет того, что квантованию с последующим кодированием и передачей по линии связи подвергается разность между исходным речевым сигналом и его предсказанным значением, а при приеме разностный сигнал скпадывается с предсказанным значением, полученным по тому же алгоритму предсказания. Шкала квантования может быть равномерной, неравномерной или адаптивно изменяемой, предсказание сигнала может не зависеть от формы последнего или же зависеть от формы сигнала, т.е. быть адаптивным. Если при кодировании сигнала используются элементы адаптации, то соответствующую разновидность ДИКМ называют адаптивной ДИКМ -АДИКМ (Adaptive DPCM - ADPCM). ДМ - это ДИКМ с однобитовым квантованием, она также может быть адаптивной (АДМ). АДИКМ находит применение, например, в беспроводном телефоне (СТ) с коэффициентом сжатия сигнала около 2.

Второйметод - кодирование источника сигнала, или кодирование параметров сигнала - первоначально основывался на данных о механизмах речеобразования, т.е. использовал своего рода модель голосового тракта и приводил к системам типа анализ - синтез, получившим название вокодерных систем, или вокодеров (vocoder - сокращение от voice coder, т.е. кодер голоса или кодер речи). Уже ранние вокодеры позвопяли получить весьма низкую скорость передачи информации, но при характерном синтетическом качестве речи на выходе. Поэтому вокодерные методы долгое время оставались в основном областью приложения усилий исследователей и энтузиастов, не находя широкого практического применения. Ситуация существенно изменилась с выходом на сцену метода линейного предсказания, предложенного в 60-х годах и получившего мощное развитие в 80-х, в том числе в прямой связи с разработкой речевых кодеков для цифровых систем сотовой связи. Именно вокодерные методы на основе линейного предсказания и применяются в сотовой связи, причем зависимость этих методов от данных о механизмах речеобразования отступает на второй или даже третий план, а оценка передаваемых по линии связи параметров производится на основе статистических характеристик сигнала по жестко определенному алгоритму, как и при кодировании формы сигнала. Поэтому фактически граница между двумя классическими методами кодирования - кодирования формы сигнала и кодирования источника сигнала - до некоторой степени стирается.

Кодер речи является первым элементом собственно цифрового участка передающего тракта АЦП. Основная задача кодера – предельно возможное сжатие сигнала речи, представленного в цифровой форме, т.е. предельно возможное устранение избыточности речевого сигнала, но при сохранении приемлемого качества передачи речи. Компромисс между степенью сжатия и сохранением качества отыскивается экспериментально, а проблема получения высокой степени сжатия без чрезмерного снижения качества составляет основную трудность при разработке кодера. В приемном тракте перед ЦАП размещен декодер речи; задача декодера – восстановление обычного цифрового сигнала речи (с присущей ему естественной избыточностью) по принятому кодированному сигналу. Сочетание кодера и декодера называют кодеком.

Ситуация существенно изменилась с появлением метода линейного предсказания, получившего мощное развитие в 1980-х годах на основе достижений микроэлектроники.

В настоящее время в системах подвижной связи получили распространение вокодерные методы на основе метода линейного предсказания. Суть кодирования речи на основе метода линейного предсказания (Linear Predictive Coding – LРС) заключается в том, что по линии связи передаются не параметры речевого сигнала, а параметры некоторого фильтра, в определенном смысле эквивалентного голосовому тракту, и параметры сигнала возбуждения этого фильтра. В качестве такого фильтра используется фильтр линейного предсказания. Задача кодирования на передающем конце линии связи заключается в оценке параметров фильтра и параметров сигнала возбуждения, а задача декодирования на приемном конце – в пропускании сигнала возбуждения через фильтр, на выходе которого получается восстановленный сигнал речи.

Значения коэффициентов предсказания, постоянные на интервале кодируемого сегмента речи (на практике длительность сегмента составляет 20 мс), находятся из условия минимизации среднеквадратического значения остатка предсказания на интервале сегмента.

Таким образом, процедура кодирования речи в методе линейного предсказания сводится к следующему:

· оцифрованный сигнал речи нарезается на сегменты длительностью 20 мс;

· для каждого сегмента оцениваются параметры фильтра линейного предсказания и параметры сигнала возбуждения; в качестве сигнала возбуждения в простейшем случае может выступать остаток предсказания, получаемый при пропускании сегмента речи через фильтр линейного предсказания с параметрами, полученными из оценки для данного сегмента;

· параметры фильтра и параметры сигнала возбуждения кодируются по определенному закону и передаются в канал связи.

Процедура декодирования речи заключается в пропускании принятого сигнала возбуждения через синтезирующий фильтр известной структуры, параметры которого переданы одновременно с сигналом возбуждения.

Во-первых, линейное предсказания – кратковременное предсказание (STP – Short-Term Prediction) не обеспечивает достаточной степени устранения избыточности речи. Поэтому в дополнение к кратковременному предсказанию используется еще долговременное предсказание (LTP – Long-Term Prediction), в значительной мере устраняющее остаточную избыточность и приближающее остаток предсказания по своим статистическим характеристикам к белому шуму.

В стандарте GSM используется метод RPE-LTP (Regular Pulse Excited Long Term Predictor – линейное предсказание с возбуждением регулярной последовательностью импульсов и долговременным предсказателем).

Блок предварительной обработки кодера осуществляет:

· предыскажение входного сигнала при помощи цифрового фильтра, подчеркивающего верхние частоты;

· нарезание сигнала на сегменты по 160 выборок (20 мс);

· взвешивание каждого из сегментов окном Хэмминга («косинус на пьедестале» – амплитуда сигнала плавно спадает от центра окна к краям).

Далее для каждого 20-миллисекундного сегмента оцениваются параметры фильтра кратковременного линейного предсказания – 8 коэффициентов частичной (порядок предсказания М = 8), которые для передачи по каналу связи преобразуются в логарифмические отношения площадей, причем для функции логарифма используется кусочно-линейная аппроксимация.

Сигнал с выхода блока предварительной обработки фильтруется решетчатым фильтром-анализатором кратковременного линейного предсказания и по его выходному сигналу (остатку предсказания) оцениваются параметры долговременного предсказания: коэффициент предсказания и задержка. При этом 160-выборочный сегмент остатка кратковременного предсказания разделяется на 4 подсегмента по 40 выборок в каждом.

В качестве сигнала возбуждения выбирается та из последовательностей, энергия которой больше. Амплитуды импульсов нормируются по отношению к импульсу с наибольшей амплитудой, и нормированные амплитуды кодируются тремя битами каждая при линейной шкале квантования. Абсолютное значение наибольшей амплитуды кодируется шестью битами в логарифмическом масштабе. Положение начального импульса 13-элементной последовательности кодируется двумя битами, т.е. кодируется номер последовательности, выбранной в качестве сигнала возбуждения для данного подсегмента.

Таким образом, выходная информация кодера речи для одного 20-миллисекундного сегмента речи включает параметры:

· фильтра кратковременного линейного предсказания;

· фильтра долговременного линейного предсказания;

· сигнала возбуждения.

Число битов, отводимых на кодирование передаваемых параметров, для одного 20-миллисекундного сегмента речи передается 260 бит информации, т.е. рассмотренный речевой кодер осуществляет сжатие информации по отношению к несжатому оцифрованному речевому сигналу (20 миллисекундному сегменту соответствует 160 восьмиразрядных отсчетов или 1280 битов) почти в 5 раз (1280: 260 = 4,92). Перед выдачей в канал связи выходная информация кодера речи также подвергается дополнительно канальному кодированию.

Речь разделяется на 20 миллисекундные фрагменты, каждый из которых кодируется в 260 битов, давая суммарную скорость передачи 13 кб/с.

Декодер. Блок формирования сигнала возбуждения, используя принятые параметры сигнала возбуждения, восстанавливает 13-импульсную последовательность сигнала возбуждения для каждого из подсегментов сигнала речи, включая амплитуды импульсов и их расположение во времени. Сформированный таким образом сигнал возбуждения фильтруется фильтром-синтезатором долговременного предсказания, на выходе которого получается восстановленный остаток предсказания фильтра-анализатора кратковременного предсказания.

Последний фильтруется решетчатым фильтром-синтезатором кратковременного предсказания, причем параметры фильтра предварительно преобразуются из логарифмических отношений площадей, в коэффициенты частичной корреляции. Выходной сигнал фильтра-синтезатора кратковременного предсказания фильтруется (в блоке постфильтрации) цифровым фильтром, восстанавливающим амплитудные соотношения частотных составляющих сигнала речи, т.е. компенсирующим предыскажение, внесенное входным фильтром блока предварительной обработки кодера. Сигнал на выходе постфильтра является восстановленным цифровым сигналом речи.

Кодер канала - второй (и последний) элемент собственно цифрового участка передающего тракта. Он следует после кодера речи и предшествует модулятору, осуществляющему перенос информационного сигнала на несущую частоту. Основная задача кодера канала - помехоустойчивое кодирование сигнала речи, т.е. такое его кодирование, которое позволяет обнаруживать и в значительной мере исправлять ошибки, возникающие при распространении сигнала по радиоканалу от передатчика к приемнику. Помехоустойчивое кодирование осуществляется за счет введения в состав передаваемого сигнала довольно большого объема избыточной (контрольной) информации. В английской терминологии такое кодирование носит наименование Forward Error Correcting coding (FEC coding), т.е. кодирование с упреждающей коррекцией ошибок, или кодирование с коррекцией ошибок на проходе. В сотовой связи помехоустойчивое кодирование реализуется в виде трех процедур - блочного кодирования (block coding), сверточного кодирования (convolutional coding) и перемежения (interleaving). Кроме того, кодер канала выполняет еще ряд функций: добавляет управляющую информацию, которая, в свою очередь, также подвергается помехоустойчивому кодированию; упаковывает подготовленную к передаче информацию и сжимает ее во времени; осуществляет шифрование передаваемой информации, если таковое предусмотрено режимом работы аппаратуры.

При блочном кодировании входная информация разделяется на блоки, содержащие по k символов каждый, которые по определенному закону преобразуются кодером в n-символьные блоки, причем n > k. Отношение R = k/n носит наименование скорости кодирования (coding rate) и является мерой избыточности, вносимой кодером. При рационально построенном кодере меньшая скорость кодирования, т.е. большая избыточность, соответствует более высокой помехоустойчивости.

Повышению помехоустойчивости способствует также увеличение длины блока. Блочный кодер с параметрами n, k обозначается (n, k). Если символы входной и выходной последовательностей являются двоичными, т.е. состоят из одного бита каждый, то кодер называется двоичным (binary); именно двоичные кодеры используются в сотовой связи. Каждый бит блока выходной информации получается как сумма по модулю 2 нескольких бит (от одного до k) входного блока, для чего используется n сумматоров по модулю 2.

Схема другого блочного кодера - это так называемый систематический кодер. Отличительная особенность систематического кодера состоит в том, что в состав блока выходной информации включается полностью блок входной информации; тривиальные сумматоры, соответствующие формированию этой части выходного блока, на схеме не показаны. Систематический кодер - простейший: выходной блок, помимо копии входного, содержит лишь один избыточный бит, который является суммой по модулю 2 всех бит входного блока.

Этот избыточный бит называется кодом контроля четности, поскольку, как нетрудно убедиться, число единиц в выходном блоке, с учетом контрольного бита, оказывается четным. Для 8-битового блока двоичной информации используется наименование байт, и схема (рис.4.1)может быть названа схемой побайтного контроля четности. На примере этой схемы можно показать возможность обнаружения ошибок при помощи блочного кода, а затем, несколько усложнив схему кодирования, - и возможность коррекции ошибок.

Рис.4.1. Схема систематического двоичного блочного кодера(8,7)

На рис.4.2а показаны семь блоков выходной информации кодера рис.4.1, причем последний бит в каждом байтовом блоке, отмеченный затененным фоном, является кодом четности. Очевидно, что при наличии одиночной ошибки в любом блоке, включая и ошибку в коде четности, нарушается правило формирования кода четности, на основании чего она и обнаруживается. Однако ошибка локализуется лишь с точностью до байта, а потому не может быть исправлена, ибо неизвестно, какой именно бит в байте ошибочен.

Рис.4.2. Обнаружение и коррекция ошибок при блочном кодировании.

а- побайтовый контроль четности позволяет обнаружить одиночные ошибки в байтах.

б– добавление ещё 8 бит позволяет исправить одиночную ошибку в восьми байтах.

Столь же очевидно, что двойная ошибка в блоке (и вообще - ошибка в четном числе бит) этой схемой не обнаруживается.

Если, помимо контроля четности по строкам для всей приведенной информации (рис.4.2а), ввести еще и контроль чётности по столбцам (нижняя строка на рис.4.2б), то при наличии одиночной ошибки в этом 64-битовом блоке мы сможем указать не только строку, содержащую ошибку, но и столбец с ошибкой, а следовательно - и ошибочный бит, лежащий на пересечении этих строки и столбца. А если известно, что бит ошибочен, то он элементарно исправляется, поскольку для этого достаточно заменить нуль на единицу или единицу на нуль - в зависимости от того, каково значение ошибочного бита. Кратные ошибки этой схемой уже не исправляются. Для коррекции кратных ошибок нужно использовать более совершенные (и более сложные) схемы кодеров. Заметим, что рис. 4.2б соответствует систематическому двоичному блочному кодеру (64, 49), и при желании его схема без труда может быть построена по аналогии с рис.4.1.

Рис.4.3. Схема свёрточного кодера (4,2,5) (n=4,k=2,R=k/n=1/2)

При сверточном кодировании (рис. 4.3) К последовательных символов входной информационной последовательности, по k бит в каждом символе, участвуют в образовании n-битовых символов выходной последовательности, n > k, причем на каждый символ входной последовательности приходится по одному символу выходной.

Каждый бит выходной последовательности получается как Результат суммированияпо модулю 2 нескольких бит (от двух до Kk бит) К входных символов, для чего используются п сумматоров по модулю 2. Сверточный кодер с параметрами n, k, К обозначается (n, k, K). Отношение R = k/n, как и в блочном кодере, называется скоростью кодирования.

Параметр К называется длиной ограничения (constraint length); он определяет длину сдвигового регистра (в символах), содержимое которого участвует в формировании одного выходного символа.

После того как очередной выходной символ сформирован, входная последовательность сдвигается на один символ вправо (рис. 4.3), в результате чего символ 1 выходит за пределы регистра, символы 2…5 перемещаются вправо, каждый на место соседнего, а на освободившееся место записывается очередной символ входной последовательности, и по новому содержимому регистра формируется следующий выходной символ. Название сверточного кода обязано тому, что он может рассматриваться как свертка импульсной характеристики кодера и входной информационной последовательности. Если k = 1, т.е. символы входной последовательности однобитовые, сверточный кодер называется двоичным. Сверточный кодер, схема которого приведена на рис. 2, не является двоичным, поскольку для него k = 2.

Перемежение представляет собой такое изменение порядка следования символов информационной последовательности, т.е. такую перестановку, или перетасовку, символов, при которой стоявшие рядом символы оказываются разделенными несколькими другими символами. Такая процедура предпринимается с целью преобразования групповых ошибок (пакетов ошибок) в одиночные ошибки, с которыми легче бороться с помощью блочного и сверточного кодирования. Использование перемежения - одна из характерных особенностей сотовой связи, и это является следствием неизбежных глубоких замираний сигнала в условиях многолучевого распространения, которое практически всегда имеет место, особенно в условиях плотной городской застройки. При этом группа следующих один за другим символов, попадающих на интервал замирания (провала) сигнала, с большой вероятностью оказывается ошибочной. Если же перед выдачей информационной последовательности в радиоканал она подвергается процедуре перемежения, а на приемном конце восстанавливается прежний порядок следования символов, то пакеты ошибок с большой вероятностью рассыпаются на одиночные ошибки. Известно несколько различных схем перемежения и их модификаций - диагональная, блочная, свёрточная и другие.

Рис.4.4. Схема диагонального перемежения. Рис.4.5. Схема блочного перемежения.

При диагональном перемежении входная информация делится на блоки, а блоки - на субблоки, и в выходной последовательности субблоки, например, второй половины предыдущего блока чередуются с субблоками первой половины следующего блока. Такая схема иллюстрируется рис.4.4, где каждый блок состоит из шести субблоков, и субблоки первого блока обозначены аi, второго - bi третьего - сi. Субблок может состоять из нескольких символов, или из одного символа, или даже из одного бита. Приведённая схема диагонального перемежения вносит малую задержку, но расставляет соседние символы лишь через один, т.е. рассредоточение ошибочных символов группы получается сравнительно небольшим.

При блочном перемежении входная информация также делится на блоки, по n субблоков (или символов) в каждом, и в выходной последовательности чередуются субблоки k последовательных блоков. Работу этой схемы можно представить себе в виде записи блоков входной последовательности в качестве строк матрицы размерности k х п (рис. 4.5), считывание информации из которой производится по столбцам. Следовательно, если входная последовательность в этом примере имела вид а1, а2, … аn, b1, b2, … bn, … k1, k2 …kn, то выходная будет такой: a1, b1, … k1, a2, b2, … k2, … an, bn, … kn. Субблоки, или символы, в частном случае здесь также могут состоять лишь из одного бита. Схема блочного перемежения вносит большую задержку, чем диагонального, но значительно сильнее рассредоточивает символы группы ошибок.

В стандарте GSM 260 бит информации, кодирующих параметры 20-миллисекундного сегмента речи, разделяются на два класса: класс 1 - 182 бита, защищаемые помехоустойчивым кодированием, и класс 2 - оставшиеся 78 бит, которые передаются без помехоустойчивого кодирования. В свою очередь, из 182 бит класса 1 выделяются 50 наиболее существенных бит, составляющих подкласс 1а, которые подвергаются более мощному кодированию, а остальные 132 бита класса 1 составляют подкласс 1b и кодируются слабее. К подклассу 1а относятся параметры фильтра кратковременного предсказания и часть информации о параметрах фильтра долговременного предсказания, к подклассу 1b - часть информации о параметрах сигнала возбуждения и оставшаяся информация о параметрах фильтра долговременного предсказания, к классу 2 - оставшаяся информация о параметрах сигнала возбуждения.

Информация подкласса 1а кодируется блочным кодом, обнаруживающим ошибки, - укороченным систематическим циклическим кодом (53, 50), дающим 3-битовый код четности. Затем вся информация класса 1 переупаковывается, располагаясь в такой последовательности: биты с четными индексами, код четности подкласса 1а, биты с нечетными индексами в обратной последовательности, четыре добавочных нулевых бита - всего 189 бит. Эти 189 бит подаются на сверточный кодер (2, 1, 5) со скоростью кодирования Д = 1/2 и длиной ограничения К = 5. В результате 378 бит с выхода сверточного кодера вместе с 78 битами класса 2 составляют 456 бит, т.е. поток информации речи на выходе кодера речи равен 456 бит/20 мс, или 22,8 кбит/с. При декодировании информации речи также сначала выполняется свёрточное декодирование информации класса 1, и при этом исправляются ошибки в пределах возможностей кода свертки. Затем по коду четности проверяется наличие остаточных ошибок в информации подкласса 1а, и, если такие ошибки обнаруживаются, информация данного сегмента не идет в последующую обработку, а заменяется интерполированной информацией смежных сегментов.

Перед выдачей в канал связи закодированная информация речи также подвергается перемежению. В стандарте GSM используется достаточно сложная и совершенная схема блочно-диагонального перемежения. 456 бит информации одного 20-миллисекундного сегмента речи разбиваются на 8 подсегментов, и 57 бит одного подсегмента распределяются между смежными восемью подсегментами таким образом, что после перемежения смежными с каждым конкретным битом оказываются соответствующие ему по положению биты, отстоявшие от него до перестановки на 4 подсегмента, причем на четные и нечетные (после перестановки) битовые позиции подсегмента ставятся биты из смежных сегментов. Алгоритм перемежения обладает свойствами квазислучайности, так что смежные биты исходной последовательности оказываются разделенными непостоянным числом бит, что является преимуществом в борьбе с периодическими битовыми ошибками.

После перемежения 456 бит информации одного сегмента распределяются по одноименным слотам четырех последовательных кадров канала трафика - два поля по 57 бит в слоте (рис.4.6), и каждое 57-битовое поле снабжается дополнительным скрытым флажком, помечающим информацию речи (в отличие от информации управления канала FACCH, которая кодируется иначе).

Информация каналов управления подвергается блочному и свёрточному кодированию в полном объеме. Так, для кодирования информации каналов SACCH, F

Рис.4.6 Структура эфирного интерфейса (канал трафика) системы GSM

ACCH, FCCH, РСН, AGCH, SDCCH используется блочный кодер (224, 184), сверточный кодер (2, 1, 5), и та же схема перемежения, что и для канала трафика. В каналах RACH, SCH используются другие схемы блочного кодирования, а также сверточные кодеры (2, 1, 5), отличающиеся от сверточных кодеров перечисленных ранее каналов управления. При передаче данных используются более сложные схемы сверточного кодирования и перемежения, обеспечивающие соответственно и более высокое качество передачи информации.

Длительность слота канала трафика, с учетом добавления вспомогательной и служебной информации, составляет 156,25 бит, и, поскольку информация одного 20-миллисекундного сегмента речи занимает по одному слоту в четырех последовательных кадрах, результирующий поток информации составляет 625 бит/20 мс, или 31,25 кбит/с. Эта

информация сжимается во времени в 8 раз, так что на протяжении одного кадра длительностью 4,615 мс передается информация восьми временных слотов, в результате чего частота битовой последовательности возрастает до 250 кбит/с.

Наконец, на каждые 12 кадров канала трафика, несущих информацию речи, добавляется по одному кадру с информацией управления канала SACCH (кадры 13 и 26 мультикадра канала графика на рис.4.6). Таким образом, частота информационной битовой последовательности на выходе кодера канала составляет 270,833 кбит/с.

    1. Модуляция сигналов в цифровых системах мобильной связи. Спектральное представление сигналов; модуляционные форматы и критерии их выбора. Шифрование и аутентификация.

Модулятор является последним элементом передающего тракта и, строго говоря, не выполняет никаких операций собственно цифровой обработки сигналов. Его задача состоит в переносе информации цифрового сигнала с выхода кодера канала на несущую частоту, т.е. в модуляции сверхвысокочастотной (СВЧ) несущей низкочастотным (НЧ) цифровым видеосигналом. Модулированный СВЧ сигнал с выхода модулятора через антенный коммутатор поступает на антенну и излучается в эфир, чтобы быть затем принятым антенной станции-получателя информации. Соответственно демодулятор - первый элемент приемного тракта, и его задача заключается в выделении из принятого модулированного радиосигнала информационного видеосигнала, который подвергается цифровой обработке в последующей части приемного тракта.

В стандарте GSM используется гауссовская манипуляция с минимальным сдвигом (Gaussan Minimum Shift Keying - GMSK). Этот метод представляет собой частотную манипуляцию, при которой несущая частота дискретно - через интервалы времени, кратные периоду T битовой модулирующей последовательности, - принимает значения:

fн=f0–F/4 илиfв=f0+F/4,

где f0- центральная частота используемого частотного канала, а F = 1/T - частота битовой последовательности.

Разнос частотΔf = fв–fн=F/2 - минимально возможный, при котором обеспечивается ортогональность колебаний частот fни fвна интервале Т длительности одного бита; при этом за время Т между колебаниями частот fни fвнабегает разность фаз, равная π. Таким образом, термин "минимальный сдвиг" в названии метода модуляции относится, в указанном выше смысле, к сдвигу частоты. Поскольку модулирующая частота в этом случае равна F/2, а девиация частоты F/4, индекс частотной модуляции составляет m = (F/4)/(F/2) = 0,5.

Термин "гауссовская" в названии метода модуляции соответствует дополнительной фильтрации модулирующей битовой последовательности относительно узкополосным гауссовским фильтром; именно эта дополнительная фильтрация отличает метод GMSK от метода MSK (Minimum Shift Keying - манипуляция с минимальным сдвигом).

Метод MSK иногда рассматривают как метод квадратурной фазовой манипуляции со смещением (OQPSK), но с заменой прямоугольных модулирующих импульсов длительности 2Т полуволновыми отрезками синусоид или косинусоид. Ниже мы поясним, в чем заключаются основания для такой интерпретации. Рассмотрим сначала метод MSK, а потом отметим, к каким отличиям приводит дополнительная гауссовская фильтрация.

В методе MSK входная последовательность битовых импульсов модулятора разбивается на две последовательности, состоящие соответственно из нечетных и четных импульсов, и модулированный сигнал (выходной сигнал модулятора) на протяжении очередного n-го бита определяется выражением, зависящим от состояния текущего n-го и предшествующего (n - 1)-го бита:

(n-1)T≤t≤nT.

Здесь ω0= 2πf0- центральная частота канала, а выбор знаков "плюс" или "минус" перед соответствующими членами выражения определяется алгоритмом, приведенным в таблице 4.1.

Таблица 4.1. Закон модуляции метода MSK

Подчеркнем, что два бита, используемые в качестве аргументов закона модуляции (два первых столбца в табл.4.1.), выбираются с учетом того, какой бит является текущим: если текущий бит четный, то вторым битом пары является предшествующий ему нечетный; если же текущий бит нечетный, то второй бит пары - предшествующий ему четный.

Из вышеприведённого выражения следует, что текущая фаза модулированного сигнала:

φ(t)=ω0t±πt/2T, т.е. набег фазы на интервале Т одного битаΔφ= ±π/2, а мгновенная частота, как производная от фазы:ω(t)=2π(f0 ±F/4),

т.е. мгновенная частота принимает одно из двух значений - fВ или fН, постоянное на протяжении бита, что и указано в последнем столбце табл.4.1.

Таким образом, изменение знака начальной фазы во второй части выражения означает переход от fН к fВ или обратно. Изменение же общего знака выражения, эквивалентное изменению начальной фазы на π, позволяет сохранить непрерывность фазы при изменении частоты.

Приведем еще одно пояснение метода MSK, которое, возможно, будет более наглядным, для чего обратимся к рис.4.7. На первом графике рис.4.7 представлен пример входной битовой последовательности амодулятора.

В

Рис.4.7. Временные диаграммы сигналов в методе MSK

торой и третий графики дают соответственно последовательности нечетных аI и четных аQ бит входной последовательности, причем длительность каждого бита увеличена вдвое в сторону запаздывания, т.е. каждый бит "растянут" во времени до 2-битового символа, и для удобства последующих рассуждений принято, что последовательности аI и аQ принимают значения +1 и -1 (значение -1 соответствует значению 0 исходной последовательности а).

В результате для каждого битового интервала длительностью Т расположенные одно над другим значения аI и аQ дают как раз ту пару четного и нечетного бит, которые являются аргументами закона модуляции (табл.4.1).

Четвертый и пятый графики рис.4.7 показывают форму модулирующих сигналов двух квадратурных каналов bI и bQ, получаемых как произведения функций аI и аQ соответственно на квадратурные низкочастотные сигналы sin(πt/2T) и cos(πt/2T). Обратим внимание на скачкообразные изменения фазы этих сигналов на π в моменты изменений знаков аI, аQ.

О

Рис.4.8. Блок-схема модулятора GMSK

кончательный модулированный сигнал согласно первой части выражения получается как результат перемножения модулирующих сигналов квадратурных каналов с соответствующими несущими sin(ω0t) и cos(ω0t) и суммирования полученных произведений. Описанный принцип построения модулятора MSK поясняется блок-схемой рис.4.8 (пока без учета первого блока - гауссовского фильтра G). Подчеркнем, что эта схема также служит лишь для иллюстрации принципа работы модулятора.

Из приведенных выше аналитических выражений непосредственно следует, что начальная фаза φнмодулированного сигнала в методе MSK описывается линейно-ломаной кривой (график 6 на рис.4.7), т.е. зависимость φн(t) является непрерывной, но не гладкой. Добавление гауссовского фильтра, т.е. фильтра низких частот с амплитудно-частотной характеристикой в форме гауссовской кривой (блок G на рис.4.8.), приводит к сглаживанию кривой φн(t) в точках излома. Ширина полосы В фильтра по уровню 3 дБ выбирается равной B=0,3F,т.е. произведение ВТ = 0,3, где Т и F, как и ранее, - соответственно период и частота битовой модулирующей последовательности.

Поскольку в стандарте GSM F = 270,833 кГц, полоса гауссовского фильтра равна В = 81,3 кГц.

Введение гауссовского фильтра приводит к сужению главного лепестка и снижению боковых лепестков спектра на выходе модулятора, чем обеспечивается допустимый уровень помех по смежным частотным каналам.

    1. Борьба с влиянием многолучевого распространения; многолучевое распространение и его проявления; разнесенный прием; скачки по частоте; эквалайзинг.

Используемые в сотовой связи дециметровые радиоволны слабо огибают препят- , ствия, т.е. распространяются в основном по прямой, но испыты­вают многочисленные отражения от окружающих объектов и под­стилающей поверхности. Одним из следствий такого много­лучевого распространения является более быстрое, чем в свобод­ном пространстве, убывание интенсивности принимаемого сигнала с расстоянием. Другое следствие - замирания и искажения ре­зультирующего сигнала. Именно эти эффекты рассмотрим несколько подробнее.

Картина многолучевого распространения схематически ил­люстрируется рис.4.9. Фактически область существенных отра­жений ограничивается обычно сравнительно небольшим участком в окрестности подвижной станции - порядка нескольких сотен длин волн, т.е. порядка нескольких десятков или сотен метров. При движении подвижной станции эта область перемещается вме­сте с ней таким образом, что подвижная станция все время оста­ется вблизи центра области. При сложении нескольких сигналов, прошедших по разным путям и имеющих в точке приема в общем случае различные фазы, результирующий сигнал может быть как несколько выше среднего уровня, так и заметно ниже, причем провалы, или замирания сигнала, образующиеся при взаимной компенсации сигналов вследствие неблагоприятного сочетания их фаз и амплитуд, могут быть достаточно глубокими. Искажения ре­зультирующего сигнала, или межсимвольная интерференция, име­ет место в том случае, когда более или менее синфазные состав­ляющие сигналы с соизмеримыми амплитудами настолько от­личаются по разности хода, что символы одного сигнала «налезают» на соседние символы другого.

Колебания уровня (замирания) принимаемого сигнала прак­тически всегда имеют две составляющие - быструю и медленную. Быстрые замирания, являющиеся прямым следствием много­лучевого распространения, описываются релеевским законом рас­пределения, и потому их иногда называют релеевскими замира­ниями. Диапазон изменений уровня сигнала при быстрых замира­ниях может достигать 40 дБ, из которых примерно 10 дБ - превы­шение над средним уровнем и 30 дБ - провалы ниже среднего уровня, причем более глубокие провалы встречаются реже

Рис.4.9. Схема многолучевого распространения в городе.

чем менее глубокие. При неподвижном абонентском аппарате интен­сивность принимаемого сигнала, естественно, не меняется. При перемещении подвижной станции периодичность флуктуации в пространстве составляет около полуволны, т.е. порядка 10... 15 см в линейной мере. Период флуктуации во времени зависит от скорости перемещения подвижной станции: например, при скорости 50 км/ч период флуктуации составляет около 10 мс, а при 100 км/ч - около 5 мс. Частота замираний глубиной 30... 10 дБ при скорости порядка 50 км/ч составляет 5...50 провалов в секунду соответст­венно, а средняя длительность замираний ниже уровня 30...10 дБ при той же скорости - порядка 0,2...2 мс.

Медленные замирания обусловлены изменением условий затенения при перемещении подвижной станции и подчиняются логарифмически нормальному закону распределения. Интенсив­ность медленных флуктуации не превышает 5... 10 дБ, а их перио­дичность соответствует перемещению подвижной станции на де­сятки метров. Фактически медленные замирания представляют собой изменение среднего уровня сигнала при перемещении под­вижной станции, на которые накладываются быстрые замирания вследствие многолучевого распространения.

Основную неприятность при сотовой связи составляют бы­стрые замирания, поскольку они бывают достаточно глубокими, и при этом отношение сигнал/шум падает настолько сильно, что по­лезная информация может существенно искажаться шумами, вплоть до полной ее потери. Для борьбы с быстрыми замираниями используются два основных метода:

  • разнесенный прием, т.е. одновременное использование двух или более приемных антенн;

  • работа с расширением спектра - использование скачков по частоте, а также метода CDMA.

Межсимвольная интерференция, как мы уже упоминали вы­ше, может иметь место при значительных разностях хода между различными лучами в условиях многолучевого распространения. Практически разности хода в городских условиях могут достигать единиц микросекунд. В методе CDMA, при использовании широко­полосных сигналов и рейк-приемников, наиболее сильные сигналы выравниваются по задержке и после этого складываются, так что проблема межсимвольной интерференции в значительной мере снимается. В относительно узкополосных системах сотовой связи, использующих метод TDMA, для борьбы с межсимвольными иска­жениями применяются эквалайзеры - адаптивные фильтры, уста­навливаемые в приемном тракте цифровой обработки сигналов, которые позволяют в некоторой степени компенсировать межсим­вольные искажения. Наконец, для борьбы с последствиями много­лучевого распространения, а именно для устранения ошибок, обу­словленных как замираниями сигналов, так и межсимвольной ин­терференцией, используется помехоустойчивое канальное кодиро­вание: блочное и сверточное кодирование, а также перемежение.

Идея разнесенного приема (английский термин diversity reception, или просто diversity - разнесение) как меры борьбы с быстрыми замираниями заключается в совместном использовании нескольких сигналов, различающихся (разнесенных) по какому-либо параметру или координате, причем разнесение должно вы­бираться таким образом, чтобы вероятность одновременных зами­раний всех используемых сигналов была много меньше, чем како­го-либо, одного из них. Иными словами, эффективность разнесен­ного приема тем выше, чем менее коррелированы замирания в составляющих сигналах. Кроме того, важны техническая реализуе­мость и простота используемого метода.

В принципе возможны как минимум пять вариантов разне­сенного приема:

- с разнесением во времени (time diversity); при этом исполь­зуются сигналы, сдвинутые во времени один относительно другого; этот метод сравнительно легко реализуем лишь в цифровой форме, и улучшение качества приема разменива­ется на пропускную способность канала связи;

-с разнесением по частоте (frequency diversity); при этом используются сигналы, передаваемые на нескольких частотах, т.е. платой является расширение используемой полосы частот;

  • с разнесением по углу, или по направлению (angle diversity, или direction diversity); при этом прием производится на несколько антенн с рассогласованными (неполностью перекрывающимися) диаграммами направленности; в этом случае сигналы с выходов разных антенн коррелированы тем слабее, чем меньше перекрытие диаграмм направленности, но при этом одновременно падает и эффективность приема (интенсивность принимаемого сигнала), по крайней мере для всех антенн, кроме одной;

  • с разнесением по поляризации (polarization diversity), когда, например, две антенны принимают сигналы двух взаимно ортогональных поляризаций; практического значения этот вариант не имеет, поскольку в диапазоне СВЧ замирания на разных поляризациях сильно коррелированы;

  • с разносом в пространстве (space diversity), т.е. с приемом сигналов на несколько пространственно разнесенных антенн; это единственный метод, находящий практическое применение, и именно он обычно имеется в виду, когда говорят о разнесенном приеме.

Для метода пространственного разнесения, или, с учетом сказанного выше, для разнесенного приема, необходимы как ми­нимум две приемные антенны, установленные с некоторым сме­щением одна относительно другой. Из общих соображений очевидно, что выигрыш от разнесенного приема тем больше, чем больше число используемых антенн, однако при этом возрастает и сложность технического решения. Поэтому практическое примене­ние находит простейшая система с двумя приемными антеннами, и в основном в базовых станциях. В подвижных станциях сколько-нибудь широкого распространения разнесенный прием не по­лучил. Существенными характеристиками системы разнесенного приема являются расстояние между антеннами и способ совмест­ного использования сигналов с выходов двух антенн. Ограничимся краткими сведениями об этих характеристиках, не углубляясь в более подробный анализ. С ростом расстояния между антеннами корреляция между флуктуациями уровня принимаемых ими сигна­лов падает, и в этом смысле чем больше разнос антенн, тем выше эффективность разнесенного приема. Но при этом возрастает и сложность технической реализации, так что практически разнос берется минимально возможным, при котором разнесенный прием уже достаточно эффективен. Реально с учетом как аналитических оценок, так и эмпирических данных разнос обычно составляет около десятка длин волн, т.е. порядка нескольких метров.

Что касается способов объединения сигналов с выходов двух антенн, то в принципе возможно как использование одного (более сильного) из двух сигналов, так и суммирование обоих сиг­налов - додетекторное (когерентное) или последетекторное, - с равными весами или со взвешиванием, обеспечивающим получение максимума отношения сигнал/шум. В случае двух прием­ных антенн различие в эффективности этих способов относитель­но невелико, и на практике обычно применяется наиболее простой из них - выбор максимального из двух сигналов с коммутацией выхода соответствующего приемника на вход тракта последующей обработки.

Использование скачков по частоте (frequency hopping), как мы уже упоминали ранее, является одним из методов расширения спектра, принципиально отличающимся от метода расширения спектра за счет модуляции прямой последовательностью (direct sequence), которая применяется в классическом методе CDMA.

Идея метода скачков по частоте состоит в том, что несущая частота для каждого физического канала периодически изменяет­ся, т.е. каждый физический канал периодически переводится на новый частотный канал. Поскольку релеевские замирания являют­ся частотно-селективными, то, если при работе на некоторой частоте имело место замирание, при изменении рабочей частоты на 100...300 кГц замирания с большой вероятностью не будет. Следовательно, при достаточно частых изменениях частоты суще­ственно снижается вероятность длительных замираний, и соответ­ственно в сочетании с перемежением снижается вероятность групповых ошибок, а с одиночными ошибками можно успешно бо­роться при помощи помехоустойчивого канального кодирования.

Различают медленные и быстрые скачки по частоте. При медленных скачках период изменения частоты много больше дли­тельности символа передаваемого сообщения, а при быстрых скачках - много меньше длительности символа. В практике сото­вой связи применение скачков по частоте предусмотрено стандар­том GSM - используются медленные скачки с переключением частоты в каждом очередном кадре. Если учесть, что в кадре каж­дому физическому каналу соответствует один слот, то для любого из физических каналов такая частота скачков эквивалентна смене частотных каналов с частотой слотов.

Изменение частоты в пределах доступного диапазона может быть как регулярным (циклическим), так и нерегулярным (псевдослучайным), причем в последнем случае может быть выбран любой из имеющихся в наборе вариан­тов псевдослучайности. Режим работы со скачками по частоте не является обязательным и назначается по команде с центра комму­тации.

Эквалайзинг - метод, используемый в узкопо­лосных TDMA-системах сотовой связи для компенсации межсим­вольных искажений. Термин эквалайзинг заимствован из англий­ского языка (equalizing - буквально выравнивание) и имеет в дан­ном случае смысл компенсации той разности хода между состав­ляющими лучами при многолучевом распространении, которая приводит к межсимвольной интерференции. Эквалайзер по своей сути - это адаптивный фильтр, настраиваемый таким образом, чтобы сигнал на его выходе был в возможно большей степени очищен от межсимвольных искажений, содержащихся во входном сигнале.

Простейшая реализация эквалайзера (рис.4.10.) - трансверсальный фильтр, подобный тому, который может использоваться в кодере речи, но с принципиально иным алгоритмом на­стройки. Покажем на простом примере, что такая схема может, по крайней мере в некоторых ситуациях, существенно ослабить меж­символьные искажения. Предположим, что входной сигнал эква­лайзера состоит из основного сигнала - некоторой последова­тельности однобитовых символов (единиц и нулей, первый график на рис.4.11,а) и его копии, ослабленной в три раза и сдвинутой во времени на длительность т одного символа (второй график на рис. 4.11,а). Если дискрет линии задержки фильтра равен т , а значение коэффициента в первом отводе с, = -1/3, то при сложении вход­ного сигнала и сигнала с первого отвода получим следующее (рис. 4.11,6): основной сигнал (первая составляющая входного сигнала) остается без изменений; вторая составляющая входного сигнала компенсируется первой составляющей, задержанной на т (сигнала с первого отвода линии задержки); вторая составляющая задер­жанного сигнала дает копию основного, но ослабленную уже в де­вять раз, задержанную на 2т и с обратным знаком. Если во втором отводе линии задержки коэффициент с2 = 1/9, то при сложении трех сигналов - входного и двух задержанных - получим неизмен­ный основной сигнал и его копию, задержанную на Зт и ослаблен­ную в 27 раз. Таким образом, в рассматриваемом примере добав­ление каждого следующего элемента линии задержки с соответст­вующим значением коэффициента С, приводит к ослаблению иска­жающего сигнала втрое и к дополнительной задержке его во вре­мени на т.

В реальной жизни, разумеется, дело обстоит сложнее, чем в описанном примере: и число лучей может быть больше двух, и за­держки едва ли будут кратны дискрету линии задержки, и ампли­туды составляющих сигналов, так же как и их число и задержки, не будут заранее известны. Кроме того, при перемещении абонент­ского аппарата вся эта картина непрерывно изменяется. Поэтому н

Рис.4.10. Линейный эквалайзер на базе трансверсального фильтра.

астройка фильтра производится адаптивно, в

с

Рис.4.11. К пояснению работы схемы эквалайзера

оответствии с конкретно складывающейся ситуацией, в отдельности для каждого

сегмента речи, передаваемого в одном слоте эфирного интерфей­са, с использованием обучающей последовательности, переда­ваемой в каждом слоте.

Приведенная на рис.4.10 схема эквалайзера на основе трансверсального фильтра является линейной, так же как и соот­ветствующая ей схема с решетчатым фильтром. Линейный эква­лайзер относительно прост по устройству, но имеет недостатки, проявляющиеся при больших искажениях сигналов. Более совер­шенными являются нелинейные эквалайзеры - схема с обратной связью по решению, схема максимально правдоподобного обна­ружения символов (максимума апостериорной вероятности) и схе­ма максимально правдоподобной оценки последовательности; в первой из этих схем могут использоваться трансверсальные или решетчатые фильтры, во второй и третьей - трансверсальные. Общая длина линии задержки фильтра должна соответствовать той разности хода лучей, для которой желательно компенсировать искажения, а дискрет линии задержки должен быть менее дли­тельности символа.

    1. Сотовая связь как система массового обслуживания. Проблема проектирования систем сотовой связи.

Рассматривая в предшествующем изложении системы сото­вой связи, в частности сопоставляя разные методы множественно­го доступа и обсуждая пути повышения емкости, мы использовали в качестве характеристики, связанной с емкостью системы, число каналов. Очевидно, однако, что создание достаточного числа кана­лов является не самоцелью, а лишь средством для обеспечения связью нужного числа имеющихся или потенциальных пользовате­лей. Столь же очевидно, что, имея, например, N физических кана­лов на ячейку, мы, безусловно, сможем обеспечить в этой ячейке связью N абонентов. Но этого слишком мало: даже при 7-ячееч-ном кластере, как ясно из уже рассмотренного нами материала, число физических каналов на ячейку практически не может превы­шать в настоящее время величины порядка 200, а часто оказыва­ется и гораздо меньшим - порядка 50...70 или даже 20...30. Ясно также, что ограничивать число обслуживаемых абонентов числом каналов явно нерационально, поскольку маловероятно, чтобы все абоненты захотели воспользоваться связью одновременно. Следо­вательно, при N каналах можно обслуживать более N абонентов, . хотя, разумеется, в некоторых случаях абоненты в ответ на вызов будут получать отказ, и тем чаще, чем больше число абонентов по сравнению с числом каналов. Таким образом, мы оказываемся пе­ред вопросом, который можно сформулировать следующим обра­зом: сколько абонентов можно обслужить в ячейке с N каналами при заданной вероятности отказа? Или наоборот: сколько нужно каналов для обслуживания заданного числа абонентов при опреде­ленной вероятности отказа? Эти вопросы мы и рассмотрим в на­стоящем разделе, основываясь на методах расчета систем массо­вого обслуживания.

Система сотовой связи, как и любая система телефонной связи, является типичным примером! системы массового обслуживания - со случайным потоком заявок (вызовов), случайной продолжительностью их обслуживания (сеан­сов связи) и конечным числом каналов обслуживания (физических каналов). Более того: система телефонной связи исторически бы­ла первым примером системы массового обслуживания, точнее тем первым практическим поводом, с которого началось развитие теории систем массового обслуживания; в частности, в качестве первой математически корректной работы по теории массового обслуживания называют работу Эрланга «Теория вероятностей и телефонные разговоры», опубликованную в 1909 г.

Основные определения. Общей характеристикой случайного потока вы­зовов является средняя частота поступления вызовов X, измеряе­мая числом вызовов в единицу времени - например, λ выз/ч. Средняя продолжительность обслуживания одного вызова (средняя продолжительность разго­вора) Г, измеряемая в единицах времени. Произведение указанных величин А = λT дает средний трафик (интенсивность трафика, ин­тенсивность нагрузки, поток нагрузки), измеряемый в эрлангах. Характеристики нагрузки - среднюю частоту поступления вызовов λ , трафик А - обычно оценивают для часа пик, т.е. для ча­сового интервала в период наибольшей нагрузки системы связи. Частота поступления вызовов, являющаяся случайной вели­чиной, обычно описывается распределением Пуассона, определя­ющим вероятность поступления к вызовов (дискретная случайная величина) за время t:

, λ·t> 0,k≥ 0.

В системе с отказами (модель Эрланга В ; в английской тер­минологии - lost-calls-cleared conditions, т.е. условия сброса вызо­вов, получивших отказ) вероятность отказа (вероятность поступле­ния вызова в момент, когда все каналы заняты) определяется вы­ражением:

, (4.1)

При оценках емкости систем сотовой связи обычно используется модель Эрланга В (модель системы с отказами). Это обусловлено тем, что при ма­лых вероятностях отказа модели Эрланга В и С дают достаточно близкие результаты. Расчет емкости системы обычно производится для значений Рв (вероятности отказа, или вероятности блокирования вызова) в пределах 0,01...0,05. С увеличением числа каналов трафик растет быстрее, чем число каналов, особенно при числе каналов менее 30...40. Поэтому в рационально построенной системе сото­вой связи должно быть во всяком случае не менее 30 каналов на ячейку.

Формула (4.1), определяющая вероятность блокирования вызова в системе с отказами, несколько громоздка для непосред­ственного применения. На практике обычно пользуются ее пред­ставлением в виде таблицы.

Проектирование - один из наиболее сложных и ответствен­ных этапов развертывания сетей сотовой связи, поскольку он дол­жен обеспечить возможно более близкое к оптимальному по­строение сети по критерию эффективность - стоимость. Формально задача проектирования проста: надо определить места установки базовых станций («расставить базовые станции») и рас­пределить имеющиеся частотные каналы между ячейками (составить территориально-частотный план в соответствии с прин­ципом одновременного использования бдних и тех же частот в геометрически разнесенных ячейках) таким образом, чтобы обес­печить обслуживание сотовой связью заданной территории с тре­буемым качеством при минимальном числе базовых станций, т.е. при минимальной стоимости инфраструктуры сети. Фактически эти задача очень сложна. С одной стороны, чрезмерное сгущение се­ти, то есть чрезмерно частая расстановка базовых станций, невы­годна, так как влечет за собой неоправданные затраты. С другой стороны, слишком редкое расположение базовых станций может привести к появлению необслуживаемых «белых пятен», что тем более недопустимо. Задача дополнительно осложняется трудно­стью аналитической оценки характеристик распространения сигна­лов и расчета напряженности поля, а также необходимостью учета неравномерности трафика в пределах обслуживаемой территории. Поэтому проектирование систем сотовой связи требует специали­стов высокой квалификации, имеющих опыт как в части решения технических вопросов, так и в части характеристик рынка.

Поскольку конфигурация и параметры сети существенным образом зависят от условий местности (рельефа, характеристик застройки и т.п.) и в ходе разработки проекта приходится выпол­нять большой объем расчетов, требующих интенсивного использо­вания вычислительных средств, проектирование начинается с соз­дания электронной карты территории, т.е. с переноса в компьютер топографической карты местности со всеми параметрами и харак­теристиками, существенными для составления проекта. Затем с учетом характеристик намечаемой к использованию аппаратуры и Результатов приближенной оценки энергетического баланса про­изводится предварительное проектирование ячеек сети и позиций базовых станций. Для полученной схемы с использованием имею­щихся моделей распространения радиоволн и характеристик ме­стности более точно рассчитываются параметры электромагнитно­го поля в пределах обслуживаемой территории, позволяющие Оценить качество покрытия. Для той же схемы составляется территориально-частотный план (распределение частотных каналов по ячейкам в соответствии с принципом повторного использования частот), а также оцениваются трафик и емкость для характерных . участков и сети в целом. Если по каким-либо показателям (качество покрытия, трафик, емкость) составленная схема сети не удовлетворяет предъявляемым к ней требованиям, производится ее корректировка, и для уточненной схемы указанные выше расчеты повторяются. Таким образом, в значительной своей части процесс проектирования оказывается итерационным.

Кроме того, в проектируемой сети обязательно производят­ся экспериментальные измерения характеристик электромагнитно­го поля, и по результатам измерений схема сети также корректи­руется. Необходимый объем экспериментальных измерений и частота их повторения определяются на основании опыта проекти­ровщиков. Окончательно качество проекта выясняется и оценива­ется уже на этапе эксплуатации сети, где также неизбежны его корректировка и доработка, особенно в самом начале работы, ко­гда производятся настройка и оптимизация сети. Этот этап рабо­ты фактически оказывается наиболее трудоемким. Наконец, по­следующие доработки проекта требуются по мере развития и со­вершенствования сети, для повышения ее качества, и в этом смысле можно сказать, что процесс проектирования сотовой сети, один раз начатый, уже никогда не заканчивается.

С проблемой проектирования тесно связана проблема оценки зоны покрытия сети сотовой свя­зи. Дело в том, что оценка зоны покрытия, в том числе и для уже действующей сети, производится расчетным путем, с эксперимен­тальной проверкой в отдельных сечениях или на отдельных участках, поскольку сплошные экспериментальные измерения во всей сети чрезмерно трудоемки. Для оценки зоны покрытия дейст­вующей сети применяются те же методы расчета, что и при проек­тировании, и качество такой оценки тем выше, чем выше квалифи­кация проектировщиков и чем совершеннее используемые ими методы проектирования.

Контрольные вопросы

1.Какой вид модуляции используется в стандарте сотовой связи GSM?

2.Что такое идентификация?

3.Что такое аутентификация?

4.В чем заключается процедура эквалайзинга?

5.Охарактеризуйте методы кодирования речи, используемые в сотовой связи?

6.С какой целью осуществляется перемежение цифровых отчетов в сотовых системах связи?

7.Расскажите основные этапы цифровой обработки сигналов?

  1. Абонентский радиотелефонный аппарат.

    1. Абонентский радиотелефонный аппарат и его возможности.

Мобильные станции — MS (Mobile Station) — (мобильные телефоны, сотовые радиотеле­фоны и т.д) в пределах каждого класса модели в определенном стандарте сотовой мобиль­ной связи различаются между собой не только количеством сервисных услуг, но и пара­метрами приемно-передающих трактов, конструкцией, внешним видом, блоком управле­ния и т.п.

На мировом рынке существует большое количество и многообразие мобильных стан­ций, однако все они имеют следующие типовые блоки (упрощенная структурная схема телефона)(рис. 5.1):

  • блок управления, в который входят дисплей и клавиатура (иногда туда включают микрофон и телефон);

  • приемо-передающий блок;

  • антенный блок с коммутатором каналов и диапазонов;

  • логический блок (мозговой центр MS) включает цифровой сигнальный процессор DSP (Digital Signal Processor), иногда называемый CPU (Central Processing Unit), со своей оперативной и постоянной памятью (DSP Memory), часто в его состав включа­ ют эквалайзер, канальный и речевой кодеки, ADC, DAC и др.;

  • идентификационный пользовательский модуль SIM-карта (Subscriber Identity Module).


Рис. 5.1. Типовые блоки мобильной станции

Основные характеристики наиболее простых и дешевых немультимедийных мобильных телефонов стандарта GSM, выпускаемых различными фирмами-производителями:

  1. выходная мощность передатчиков МТА лежит в пределах (0,6...2) Вт в максимальном режиме работы;

  1. число строк на дисплее (2...6);

  2. возможность передачи данных с помощью PC card-модема;

  3. возможность введения кода для запрета использования другой SlM-карты;

  4. работа со штатным аккумулятором в режиме разговора/ожидания: 1/20...10/100;

  5. масса МТА колеблется от 99 до 275 г;

  6. возможность автоматического ответа на звонок.

При приобретении МТА для работы с ним придается «Руководство по эксплуатации», в соответствии с которым проводится подготовка к использованию, заряду аккумулятора, включение и работа с МТА.

Обобщим минимальный набор функций МТА:

  1. вызов, ответ на вызов;

  2. повторный вызов последнего набранного номера;

  3. ускоренный набор;

  4. вызов почтового ящика речевой почты;

  1. электронная записная книжка — список телефонов, часы, календарь, калькулятор (до 250 номеров телефонов и имен);

  1. список меню;

  2. защита телефона;

  3. выбор сети;

  1. посылка сигналов DTMF (Dual Tone Mu In Frequency) — двухтоновый многочастот­ ной сигнализации и др.

Широкую номенклатуру мобильных телефонов стандарта GSM можно найти в фирмен­ных и рекламных материалах различных фирм, поставляющих их на рынок телекоммуника­ционных услуг (Nokia, Siemens, Ericsson, Motorola, Samsung, Philips и др.).

    1. Функциональная и структурная схемы аналогового и цифрового сотового радиотелефона.

Структурная схема радиотелефона аналогового стандарта ETACS представле­на на рис. 5.2. Передающий (сверху) и приемный (снизу) блоки выполнены по классической схеме.

Рис. 5.2. Функциональная схема радиотелефона аналогового стандарта ETACS

Аналоговый речевой сигнал, поступающий с микрофона, усиливается усили­телем низкой частоты (УНЧ) до необходимого уровня и поступает в фазовый мо­дулятор Гфм как сигнал fмод. Промодулированный сигнал fфм частотой 90 МГц че­рез полосовой фильтр ПАВ поступает в смеситель. Такой фильтр более компак­тен, чем фильтры на LC-контурах и гораздо более технологичен. На смеситель с синтезатора частот приходит также сигнал /прд. С выхода смесителя сигнал fс, че­рез полосовой керамический фильтр поступает в усилитель мощности класса С, обеспечивающий максимальный КПД передатчика. Усиленный сигнал через уси­литель мощности (УМ) и полосовой керамический фильтр поступает к антенне.

Приемное устройство представляет собой супергетеродинный приемник с двойным преобразованием частоты. Входной сигнал поступает в полосовой фильтр на ПАВ, выделяющий принимаемый сигнал и ослабляющий помехи. Фильтр построен на использовании ПАВ и является ПАВ-фильтром. Отфильтро­ванный ПАВ-фильтром сигнал fс поступает в малошумящий усилитель (МШУ) и после усиления подается в смеситель. На второй вход последнего с синтезатора частот поступает сигнал гетеродина fпрм.

Полученный сигнал первой промежуточной частоты fпр1 (45 МГц) направля­ется на вход усилителя первой промежуточной частоты УПЧ1 и после усиления фильтруется полосовым ПАВ-фильтром. Отфильтрованный сигнал /пр1 поступает на второй смеситель. В него же с гетеродина (Г) поступает сигнал fг. Получен­ный в результате смешения этих частот сигнал второй промежуточной частоты fпр2 частотой 450 кГц снова фильтруется полосовым фильтром на ПАВ и усилива­ется усилителем УПЧ2. Усиленный до необходимого уровня сигнал поступает в фазовый демодулятор, где выделяются сигналы управления и речевой сигнал. Последний поступает в усилитель УНЧ и далее — на телефонный капсюль. Сигналы управления обрабатываются центральным процессором CPU.

В сотовом телефоне используется синтезатор частот, с помощью которого можно выбрать любой из выделенных каналов сотовой связи. Частоты канала, выбранного в каждый конкретный момент времени, определяются устройством управления CPU. Когда сотовый телефон перемещается в пространстве от ячейки к ячейке, частоты приема и передачи переключаются таким образом, чтобы соот­ветствовать доступным каналам связи в новой ячейке. Инструкции, предписы­вающие, на какую частоту переключиться, поступают на телефон вместе с други­ми сигналами управления со станции сотовой связи и декодируются модемом, входящим в состав устройства управления телефона.

Синтезатор частот обычно строится на основе систем фазовой автоподстрой­ки частоты (ФАПЧ) и включает в себя опорные генераторы (обычно их два), час­тоты которых стабилизируются кварцевыми резонаторами, а также два генерато­ра, управляемых напряжением (ГУН) и вырабатывающих сигнал гетеродина при­емника и несущую передатчика. Сигналы обоих ГУН смешиваются в отдельных смесителях с сигналом одного из опорных генераторов, в результате чего на вы­ходах смесителей выделяются сигналы разностных частот.

Частота сигнала второго опорного генератора делится в определенное число раз двумя (один для несущей, другой для гетеродина) делителями с переменным коэффициентом деления (ДПКД). Коэффициент деления каждого ДПКД опреде­ляется управляющим кодом, передаваемым сотовой станцией. Схема ФАПЧ срав­нивает разностные частоты на выходах смесителей с частотами на выходах ДПКД и подстраивает оба ГУН таким образом, чтобы вышеуказанные частоты оказались равны. Таким образом, частоты сигналов гетеродина и генератора не­сущей определяются, с одной стороны, образцовыми частотами двух опорных ге­нераторов, а с другой — управляющими кодами сотовой станции, что гарантиру­ет их высокую стабильность.

Обработка сигналов управления, опрос клавиатуры, формирование необходи­мых частот и вывод информации на дисплей происходят под управлением цен­трального процессора. Устройство управления координирует работу всех узлов сотового телефона. По своей архитектуре оно похоже на упрощенный персональ­ный компьютер. Функционирование микропроцессора осуществляется на основе инструкций (программ), хранящихся в постоянном запоминающем устройстве (ПЗУ).

Оперативное запоминающее устройство (ОЗУ) используется для временного хранения данных, например номера текущего канала связи, установленной мощ­ности передатчика и т. д., а также результатов логических или математических операций, которые производятся при выполнении программы. В репрограммируемом постоянном запоминающем устройстве (РПЗУ) хранится информация, специ­фическая для каждого конкретного телефона, например назначенный сотовый те­лефонный номер.

Поскольку сотовые телефоны являются активными элементами сети, они должны находиться с ней в постоянном контакте. Помимо речевых сигналов и то­нальных DTMF-сигналов набора номера, сотовые телефоны должны передавать и принимать данные от приемопередатчика текущей ячейки (т. е. в конечном счете от центральной сотовой станции). Для «подмешивания» данных в передаваемый телефоном радиосигнал, а также для выделения и декодирования команд и дан­ных, получаемых из сети, используется интегральная схема модема.

Микропроцессор (МП) управляет работой контроллера сотового телефона, обычно представляющего из себя специализированную интегральную схему, че­рез которую осуществляется взаимодействие с клавиатурой и индикатором сото-зого телефона. Он используется также при установке необходимых частот синте­затора в радиоприемном и передающем устройствах радиотелефона.

В сотовом телефоне устанавливается дисплей, на котором индициру­ется набираемый номер и режим работы сети и телефона (например, «выбор», «включен», «в работе», «поиск », «занято» и т. д.). Для снижения потребляемой мощности и увеличения срока службы аккумуляторов в качестве дисплея используется жидкокристаллический индикатор.

Структурная схема GSM сотового телефона

Структурная схема сотового радиотелефона, работающего в цифровом стан­дарте GSM (рис. 5.3), состоит из аналоговой и цифровой частей, которые обыч­но располагаются на отдельных платах. Аналоговая часть включает в себя прием­ное и передающее устройства, которые по своим характеристикам и построению напоминают описанные выше.

В системах стандарта GSM передатчик и приемник сотового телефона рабо­тают не одновременно. Передача осуществляется только в течение 1/8 длитель­ности кадра. Это значительно уменьшает расход энергии аккумуляторной бата-реи и увеличивает время функционирования как в режиме передачи (разговора), так и в режиме приема (ожидания). Кроме того, заметно снижаются требования к ВЧ-фильтру приемника, выполненному на ПАВ, что делает возможным интегра­цию МШУ со смесителем. Блок сопряжения прием-передача — это электронный коммутатор, подключающий антенну либо к выходу передатчика, либо ко входу приемника, поскольку сотовый телефон никогда не работает на прием и передачу одновременно.

Рис. 5.3. Функциональная схема радиотелефона цифрового стандарта GSM

Принимаемый сигнал после прохождения входного полосового фильтра уси­ливается МШУ и поступает на первый вход первого смесителя. На второй вход поступает сигнал гетеродина fпрм с синтезатора частот. Сигнал первой промежу­точной частоты fпр, проходит через полосовой фильтр на ПАВ и усиливается уси­лителем первой промежуточной частоты УПЧ1, после чего поступает на первый вход второго смесителя. На второй его вход поступает сигнал гетеродина fг с ге­нератора частот. Полученный сигнал второй промежуточной частоты fпр2 фильт­руется полосовым фильтром на ПАВ, усиливается усилителем УПЧ2, демодулируется и поступает на аналого-цифровой преобразователь (АЦП), где преобразу­ется в сигнал, необходимый для работы цифрового логического блока, выполненного на центральном процессоре CPU.

В режиме передачи информационный цифровой сигнал, сформированный в логическом блоке, поступает на 1/О-генератор, где происходит формирование модулирующего сигнала. Последний поступает в фазовый модулятор, с которого сигнал fфм поступает в смеситель. На второй вход смесителя поступает сигнал fпрд с синтезатора частот. Полученный сигнал fс1 через полосовой фильтр поступает в усилитель мощности (УМ), управляемый с помощью центрального процессора CPU. Усиленный до необходимого уровня сигнал fс1 через полосовой керамиче­ский фильтр поступает к антенне А и излучается в окружающее пространство.

Цифровая логическая часть сотового телефона (рис. 5.4) обеспечивает фор­мирование и обработку всех необходимых сигналов. Сердцевиной этой важной части цифрового телефона является центральный процессор CPU. Он выполнен в виде СБИС на микромощных полевых транзисторах со структурой «металл-ди­электрик-полупроводник» (МДП или MOS).

В состав цифровой части телефона входят:

  • Цифровой сигнальный процессор (CPU) со своей оперативной и постоян­ной памятью, осуществляющий управление работой сотового телефона. CPU телефонов несколько проще, чем микропроцессоры компьютеров, но тем не менее являются сложнейшими микроэлектронными изделиями.

  • Аналого-цифровой преобразователь (АЦП), который преобразует анало­говый сигнал с выхода микрофона в цифровую форму. При этом вся после­дующая обработка и передача сигнала речи производится в цифровой фор­ме, вплоть до обратного цифро-аналогового преобразования.

  • Кодер речи, осуществляющий кодирование сигнала речи, имеющего уже цифровую форму, по определенным законам с использованием алгоритма сжатия для сокращения избыточности сигнала. Таким образом осуществляется сокращение объема информации, которую необходимо передавать по радиоканалу связи.

  • Кодер канала, добавляющий в цифровой сигнал, получаемый с выхода ко­дера речи, дополнительную (избыточную) информацию, предназначенную для защиты от ошибок при передачи сигнала по линии связи. С этой же це­лью информация подвергается определенной переупаковке (перемежению). Кроме того, кодер канала вводит в состав передаваемого сигнала информа­цию управления, поступающего от логической части.

  • Декодер канала, выделяющий из входного потока данных управляющую информацию и направляющий ее в логический блок. Принятая информация проверяется на наличие ошибок, которые по возможности исправляются. Для последующей обработки принятая информация подвергается обратной по отношению к кодеру переупаковке.

Рис. 5.4. Цифровая и логическая часть мобильного сотового телефона

  • Декодер речи, восстанавливающий поступающий на него с декодера канала цифровой сигнал речи, переводящий его в естественную форму, со свойст­венной ему избыточностью, но по-прежнему в цифровом виде. Отметим, что для сочетания кодера и декодера, расположенных в одном корпусе ин­тегральной микросхемы, иногда употребляют название кодек (например, кодек речи, канальный кодек).

  • Цифро-аналоговый преобразователь (ЦАП), преобразующий принятый сигнал речи в аналоговую форму и подающий этот сигнал на вход усилите­ля динамика.

Эквалайзер, служащий для частичной компенсации искажений сигнала из-за многолучевого распространения. Эквалайзер является адаптивным фильтром, настраиваемым по обучающей последовательности символов, входящих в состав передаваемой информации. Этот блок, вообще говоря, не является функционально необходимым и в некоторых случаях может от­сутствовать.

  • Клавиатура, представляющая собой наборное поле с цифровыми и функ­циональными клавишами для набора номера вызываемого абонента, а так­же команд, определяющих режим работы сотового телефона.

  • Дисплей, служащий для отображения различной информации, предусмот­ренной устройством и режимом работы станции.

  • Блок шифрования и дешифрования сообщений, предназначенный для обеспечения конфиденциальности передачи информации.

  • Детектор речевой активности (voice activity detector), включающий пе­редатчик на излучение только на те интервалы времени, когда абонент го­ворит. На время паузы в работе передатчика в тракт дополнительно вводит­ся так называвемый комфортный шум. Это сделано в интересах экономного расходования энергии источника питания, а также снижения уровня помех для других станций.

  • Терминальные устройства, используемые для подключения через специ­альные адаптеры с использованием соответствующих интерфейсов, факс-аппаратов, модемов и др.

  • SIM-карта (SIM — subscriber identification module, буквально — мо­дуль идентификации абонента) — пластиковая пластина с микросхемой, вставляемая в специальное гнездо абонентского аппарата. В SIM-карте хранятся:

  • данные, присваиваемые каждому абоненту: международный идентифика­ционный номер подвижного абонента (IMSI), ключ аутентификации або­нента (Ki) и класс управления доступом;

  • временные данные о сети: временные идентификационный номер под­вижного абонента (TMSI), идентификатор области местоположения (LAI), ключ шифрования (Ке), данные о запрещенных для доступа под­вижных сетях;

  • данные, относящиеся к обслуживанию: предпочтительный язык обще­ния, уведомления об оплате и перечень заявленных услуг.

Одна из основных задач SIM-карты состоит в обеспечении защиты от несанк­ционированного использования сотового телефона. На уровне абонентского ин­терфейса на SIM-карте записывается персональный идентификационный номер (PIN-номер) длиной от 4 до 8 разрядов, который микропроцессор SIM-карты по­сле включения станции сверяет с номером, набираемым пользователем с помо­щью клавиатуры. Если три раза подряд набран ошибочный PIN-номер, использо­вание SIM-карты блокируется до тех пор, пока абонент не введет 8-разрядный персональный ключ разблокирования (PUK).

Если ошибочный PUK вводится 10 раз подряд, использование SIM-карты пол­ностью блокируется и абонент будет вынужден обратиться к оператору сети.

Кроме того, благодаря SIM-картам имеется возможность звонить не только со своего сотового телефона, но и с любого другого GSM-телефона, достаточно вста­вить SIM-карту в аппарат и набрать личный идентификационный PIN-номер.

    1. Услуги сотовой связи. Конфиденциальность связи. Фрод в сотовой связи. Биологическая безопасность.

В системах второго поколения пользователю могут быть предоставлены основные и дополнительные услуги связи. Основные услуги связи: телефонная связь, экстренные вызовы, передача коротких сообщений, факсимильная связь. Услуга экстренного вызова позволяет устанавливать абонентской станции речевую связь с ближайшим центром экстренной службы. К дополнительным услугам связи относятся:

· услуги по распознаванию номера; · переадресация и перенаправление вызова; · услуги завершения связи (вызов на удержании, вызов с ожиданием и т.п.); · конференц-связь; · услуги по учету стоимости переговоров; · услуги группового соединения; · услуги по ограничению вызовов и др.

В условиях конкурентной борьбы за абонента операторы крупных сетей стараются внедрять новые услуги. В последнее время были введены такие услуги, как подключение абонента на условиях предоплаты, услуга WAP – доступ в сеть Интернет непосредственно с мобильного терминала, система глобального позиционирования GPS, видеосвязь и др.. Но такие возможности появились с появлением коммуникаторов (смартфонов).

Конфиденциальность связиобеспечивается защитой от несанкционированного доступа к каналам связи. Для этого используются различные методы шифрования. Например в стандартеGSMшифрование осуществляется путем помехоустойчивого кодирования и перемежения и заключается в поразрядном сложении по модулю 2 информационной битовой последовательности и псевдослучайной битовой последовательности, составляющей основу шифра. Повторное применение операции сложения по модулю 2 с той же псевдослучайной последовательностью к зашифрованной инфомационной последовательности восстанавливает исходную информационнуюбитовую последовательность, то есть реалищует дешифрацию шифрованного сообщения (рис. ).

Существует еще возможность защиты от подслушивания – это скремлирование (scrambling– перемешивание, перетасовка), являющееся своебразным шифрование путем перестановки участков спектра или сегментов речи, осуществляемое во внешнем по

Рис.5.5. Принцип шифрования и дешифрации информации в стандартеGSM.

отношению к мобильному телефону устройстве с соответствующим дескремблированием на приемном конце.

Фрод (от англ. fraud — обман, мошенничество) — одна из серьезных про­блем сотовой связи. Фрод можно определить как незаконную деятельность, на­правленную на использование услуг сотовой связи без надлежащей оплаты или за счет оплаты этих услуг людьми, такими услугами не пользующимися.

Время от времени мировую и нашу прессу потрясают сообщения о мошенни­чествах в области сотовой связи. Самое неприятное, когда зарегистрированный за кем-то сотовый телефон попадает в руки мошенников, способных обмануть по­ставщиков сотовой связи и бесконтрольно осуществлять переговоры в большом объеме. Порой для этого используются примитивные приемы (например, злост­ные неплатежи), а порой весьма тонкие методы, основанные на прекрасном зна­нии документации по сотовым сетям связи. Практикуется переделка номеров со­товых аппаратов и всевозможная «химия» с шифрами и паролями.

Потери от фрода, даже после многих лет борьбы с ним, достигают несколь­ких процентов от общего объема услуг сотовой связи. К примеру, в 1996 г. в США они составили сумму чуть более 1 млрд долл. при общем доходе от сотовой связи 21 млрд долл. Данные о таких потерях большинство операторов старается не публиковать, и они становятся известными общественности спустя годы после крупных «проколов».

Если у вас появилось подозрение, что кто-то пользуется (явно или неявно) вашим аппаратом, то необходимо немедленно поставить в известность об этом поставщика услуг сотовой связи. Например, такое подозрение может базировать­ся на заметном увеличении объема оплаты услуг сотовой связи по сравнению с привычным для вас уровнем. Если не проконтролировать случившееся, то вы мо­жете неожиданно получить счет на сотни, если не на тысячи долл.. И будете втя­нуты в долгую судебную тяжбу с неясным исходом.

Кроме фрода, огромный ущерб сотовой связи наносит продажа «серых» теле­фонов. Это могут быть приобретенные по дешевке забракованные аппараты, кото­рые затем кустарно доводятся до рабочего состояния — нередко далеко не по всем функциональным возможностям. Такие аппараты доставляют массу хлопот не только их владельцам, позарившимся на дешевизну, но и операторам сотовой связи. Ибо, плохо выполняя (или вообще не выполняя) многие функции, они вы­зывают шквал звонков в службы сервиса.

Подслушивание разговоров по сотовым телефонам — тоже далеко не без­обидная вещь. Особенно уязвимы в этом аналоговые сети. Но и в цифровых се­тях, даже при наличии соответствующего оборудования для кодирования и деко­дирования разговоров, подслушивание их тоже вполне возможно. Об этом стоит помнить, ведя разговоры.

Приемы незаконного использования сотовых те­лефонов разнообразны, хотя и существует мнение о том, что об этом надо знать. Только вот в каком объеме? К примеру, всякому ясно, что сотовый телефон можно использо­вать в качестве очень простого радиовзрывателя. Однако описание пусть даже простой схемы такого применения едва ли можно приветствовать. Соответствую­щие органы мигом могут признать это пособием для террористов. Поэтому, пре­дупредив пользователя о наличии брешей в законном применении сотовых теле­фонов, мы на этом окончим описание этих тонких моментов в применении мо­бильных телефонов.

Биологическая безопасность.

Время от времени появляются сенсационные новости о развитии раковых опухолей от использовании сотового телефона. Где-то в США вроде были даже судебные процессы по этому поводу. Встречаются и сообщения о взрывах авто­стоянок во время заправки автомобилей, о сбившихся с курса самолетах, об остановившихся по вине сотовых телефонов реакторах атомных электростанций и т.д. В подавляющем большинстве случаев документального подтверждения такие «новости» не находят.

В самом деле частоты сотовой связи относятся к тому виду электромагнитно­го излучения, которое легко поглощается тканями наших рук, головы и головного мозга. Исследования показали, что до 60 % энергии излучения сотового телефона поглощается тканями головы человека. Правда, только часть энергии СВЧ-излучения попадает вглубь головы. Большая часть поглощается кожей и костями черепа.

Между тем никаких официальных данных о каком-либо влиянии излучения сотовых телефонов на организм человека нет. И не потому, что соответствующие исследования не проводились. А потому, что нормы на мощность излучения на­много меньше тех норм, которые были установлены для людей соответствующи­ми инстанциями.

Степень поглощения энергии электромагнитного излучения организмом чело­века является величина SAR (Specific Absorption Rates). Она выражается в энер­гии поглощенного излучения на единицу массы (г или кг) биоткани. При этом за 20 минут воздействия ткань нагревается на 1 °С.

Нетрудно понять, что такой чисто «термодинамический» подход отнюдь не способствует успокоению людей. Ибо не надо обладать обширными медицински­ми познаниями, чтобы считать, что действие излучения сводится отнюдь не толь­ко к нагреву тканей организма. Нельзя не учитывать, что на генетическом уровне куда менее мощное излучение способно вызвать нарушение клеточной структуры тела или повреждение генов. Поэтому, в Европе, к примеру, установлена норма SAR в 2 мВт /г.

Между прочим, есть простой способ кардинально ослабить степень воздейст­вия радиоизлучения мобильных телефонов на организм человека, и прежде всего на его голову. Это применение специальной гарнитуры hands free (свободные руки). Эта гарнитура представляет собой закрепляемый на голове наушник и микрофон, а также пульт управления радиотелефоном. Сам телефон может быть установлен в отдалении. Возможно подключение к нему и внешней антенны, ко­торая может быть установлена за окном или даже на крыше автомобиля.

Кстати, из всех видов опасности, связанной с сотовыми телефонами, на пер­вом месте стоит отвлечение пользователя от своей основной работы. Например, весьма часты автомобильные аварии, связанные с тем, что водитель во время езды берет телефон в руки, и особенно когда он набирает номер. Во многих стра­нах, включая и Россию, это запрещено и преследуется штрафами. Гарнитура hands free и голосовое управление телефоном — вот основные средства против этого фактора.

Контрольные вопросы

  1. Назовите типовые блоки абонентской мобильной станции?

  2. Раскажите устройство и основное назначение узлов аналогового мобильного телефона?

  3. Раскажите устройство и основное назначение узлов цифрового мобильного телефона?

  4. Дайте определение «фрод» и чем он опасен?

  5. Перечислите основные меры, направленные на снижения влияния излучения сотовой связи на организм человека?

  6. Основные симптомы проявления болезни обусловленной радиоизлучением?

  7. Перечислите основные услуги предоставляемой сотовой связью?

  8. Как обеспечивается конфиденциальность связи в мобильных сетях?

  1. Сравнительный анализ систем мобильной связи.

    1. Транкинговая связь. Персональный радиовызов (пейджинг).

Транкинговые системы радиосвязи(ТСР) являются развитием систем низовой полудуплексной радиосвязи и по ряду признаков могут быть соотнесены с сотовыми системами связи. В отличие от обычных систем с постоянно закрепленными частотными каналами в ТСР применяется динамическое распределение каналов. Термин транкинг, принятый в сфере профессиональной радиосвязи, означает метод свободного доступа большого числа абонентов к ограниченному числу каналов (пучку, стволу или, по зарубежной терминологии, – транку). Поскольку в какой-либо момент времени не все абоненты активны, необходимое число каналов значительно меньше общего числа абонентов. Когда радиоабонент транкинговой системы осуществляет вызов, система назначает ему один из имеющихся свободных каналов. При этом статистика активности обычно такова, что небольшого количества выделенных каналов достаточно для обслуживания значительного числа абонентов. В отличие от обычных систем радиосвязи ТСР характеризуются следующими признаками:

• экономное использование радиоспектра; • наличие одной или нескольких базовой радиостанций и системы управления; • возможность выхода в другие сети, в частности в телефонную сеть общего пользования; • увеличение зоны обслуживания путем создания многозоновой сети; • передача данных и телеметрической информации; • множество сервисных возможностей.

Перечисленные выше признаки характерны и для сотовых систем связи. Однако в отличие от сотовых транкинговые системы в первую очередь ориентированы на задачи, связанные с оперативным управлением. Список потребителей здесь чрезвычайно широк – подразделения железных и автомобильных дорог, предприятия энергетического комплекса, администрации всех уровней, учреждения городского хозяйства, правоохранительные органы, отряды МЧС, коммерческие структуры и т.д. В сравнении с сотовыми системами к преимуществам ТСР, позволяющим отдать им предпочтение при организации оперативной связи, следует отнести:

• гибкую систему вызовов – индивидуальный, групповой, вещательный, приоритетный, аварийный и др.; • гибкую систему нумерации – от коротких двух или трехзначных до полноценных городских номеров; • малое время установления соединения – менее секунды, против нескольких секунд в сотовых системах; • возможность работы в группе; • наличие (в ряде систем) режима непосредственной связи между двумя абонентскими радиостанциями без участия базовой; • экономичность – по стоимости оборудования и по эксплуатационным расходам ТСР в несколько раз экономичнее сотовых систем.

Сравнивая сотовые и транкинговые системы, необходимо отметить, что при внешней структурной схожести они существенно отличаются по ряду функциональных особенностей и системных возможностей. Если первые ориентированы на потребителей обычных телефонных услуг и окупаются в регионах с высокой плотностью населения (порядка тысячи и более абонентов в зоне), то вторые, прежде всего, являются средством оперативной и производственно-технологической связи и рентабельны при на порядок меньшем числе абонентов. Следует заметить, что сами термины «сотовые» или «транкинговые системы» малоинформативны с точки зрения выявления их отличий. Так, в сотовых системах используется метод динамического распределения каналов, т.е. транкинг, и наоборот, современные многозоновые транкинговые системы содержат ряд «родовых» признаков сотовых систем. Эти термины сложились исторически и обозначают системы мобильной радиосвязи, которые развивались своими путями, решая разные задачи. Для более полного представления о функциональных возможностях ТСР перечислим основные типы вызовов, поддерживаемые большинством стандартных протоколов:

• индивидуальный вызов для связи между двумя абонентами; • групповой вызов для связи между несколькими абонентами одновременно; • вещательный вызов для предварительно выбранной группы, когда абоненты могут только слушать сообщение, но не могут отвечать; • конференц-вызов для подключения к разговору третьего абонента во время разговора двух абонентов; • переадресация вызова: вызовы, адресованные абоненту, автоматически переадресуются заранее назначенному третьему абоненту; • приоритетный вызов применяется для сокращения времени ожидания при занятости системы; такие вызовы обслуживаются вне общей очереди; • срочный (аварийный) вызов имеет наивысший приоритет, связь устанавливается немедленно путем прерывания уже установленных соединений; • статусная связь – посылка коротких текстовых сообщений любому другому абоненту или диспетчеру; • передача блоков данных применяется для связи между компьютерами или другими системами обработки цифровой информации; • диспетчерская связь – вызовы на специально сконфигурированные диспетчерские пульты; • исходящие и входящие вызовы для абонентов телефонной сети обеспечивают взаимодействие радиоабонентов с абонентами ведомственной сети или сетью общего пользования.

Благодаря перечисленным особенностям транкинговые системы заняли самостоятельную нишу на рынке оборудования средств радиосвязи. Многие ведущие фирмы – Motorola, Nokia, Ericsson и др. – наряду с обычными радиостанциями производят также и сотовое, и транкинговое оборудование, ориентированное на соответствующие секторы этого рынка. Цифровые транкинговые системыпредоставляют своим пользователям ряд преимуществ перед аналоговыми системами.

• Конфиденциальность переговоров. Применение криптостойких алгоритмов скремблирования позволяет обеспечить гарантированную защиту от прослушивания информации, что очень важно для большинства пользователей транкинговой связи. При этом в отличие от аналоговых методов шифрования, качество восстановленного сигнала не ухудшается. • Эффективное использование радиочастотного спектра. Применение низкоскоростных кодеров речи (вокодеров) в сочетании с методами цифровой модуляции и цифровыми технологиями множественного доступа позволяет по сравнению с аналоговыми системами более эффективно использовать полосу частот. • Помехоустойчивая ретрансляция сигналов. В аналоговых системах промежуточные ретрансляторы усиливают радиосигнал, но не «очищают» его от помех канала. В результате при многократной ретрансляции шумы накапливаются, и качество сигнала значительно ухудшается. Наоборот, в цифровых ретрансляторах происходит восстановление сигнала, в результате чего качество связи практически не зависит от размеров зоны обслуживания. • Эффективная передача данных. При передаче данных по цифровым каналам нет необходимости в применении специальных модемов.

В настоящее время выпускается целый ряд цифровых транкинговых систем.

Функциональная схема системы персонального радиовызова.СПРВ обеспечивает одностороннюю передачу коротких сообщений на ограниченной территории по радиоканалу. Эта услуга электросвязи известна также под названием «пейджинг». Информация для передачи может поступать через различные сети. Например, широко были распространены системы, в которых диспетчер сети получает речевую информацию по телефону из ТФОП. Основные технические характеристики радиоинтерфейса СПРВ определяются форматом кодов сигналов радиовызова.

В зависимости от используемых радиоканалов различают СПРВ со специально выделенными радиоканалами и системы с каналами, полученными при уплотнении существующих вещательных радиоканалов.

В настоящее время эти системы перешли в службу коротких сообщений (SMS), которые совмещены с системами сотовой мобильной связи и фактически утратили самостоятельное значение.

    1. Мобильная спутниковая связь.

Функциональная схема спутниковой системы подвижной связи.Спутниковая система подвижной связи (ССПС) содержит: космический сегмент, земной сегмент, линии радиосвязи и абонентские терминалы (АТ). Космический сегмент образуют ретранс­ляторы на ИСЗ. В земной сегмент входят базовые земные станции (БЗС), центр управления сетью (ЦУС) и центр управления полетом (ЦУП). ЦУС планирует использование ресурсов спутника в системе, распределяет ресурсы ретрансляторов ИСЗ между БЗС, обеспечивает БЗС данными для слежения за ИСЗ. Он же планирует трафик. Центр управления полетом контролирует орбиты ИСЗ, обрабатывает телеметрию, формирует команды, передает на ЦУС сведения о состоянии и ресурсе ИСЗ. Как правило, центры подключены к одной из БЗС и не имеют собственного радиотехнического оборудования. Вся телеметрия и управление выполняются через БЗС по радиоканалам. БЗС также называют станциями сопряжения или шлюзовыми станциями. Все соединения между абонентами спутниковой системы выполняются через БЗС. Для этого в схеме БЗС предусмотрены интерфейсы. Часто БЗС соединяются линиями связи с ЦКПС ССПСЭ. Линии радиосвязи подразделяются на мобильные, фидерные, межспутниковые, командные и телеметрические. Мобильные – это линии радиосвязи с абонентскими терминалами. Линии радиосвязи с БЗС называются фидерными. В некоторых спутниковых системах связи организованы межспутниковые линии между соседними ретрансляторами на одной орбите и на соседних орбитах. Командные и телеметрические линии как правило совмещены с фидерными. Абонентские терминалы подразделяют на портативные, перевозимые и стационарные. По техническим возможностям это может быть однорежимный терминал, который может работать только в спутниковых системах подвижной связи, двухрежимный и многорежимный. Двухрежимный позволяет работать как в указанной сети, так и в ССПСЭ определенного стандарта, например GSM. Многорежимный абонентский терминал позволяет работать в спутниковых системах подвижной связи и в ССПСЭ нескольких стандартов.

    1. Беспроводной телефон и локальные беспроводные сети.

Радиодоступ (радиоудлинение) или беспроводное подключение (WLL - Wireless Local Loop) обеспечивает максимальную мобильность и оперативность связи, является быстрым способом организации связи, особенный эффект достигается, если прокладка кабеля связана со значительными затратами, или невозможна (например, в помещениях, имеющих железобе­тонные полы и стены, и т.д.) или нецелесообразна (например, в помещении, снятом на короткий срок). Полоса пропускания для систем радиодоступа также ограничивается частотным ресурсом.

В настоящее время все большее распространение для организации абонентского радиодоступа начинают получать системы WLL, как наиболее экономичные и отвечающие основным задачам операторов связи.

При сравнении способов организации абонентского доступа необходимо учесть следующее. Системы WLL по сравнению с кабельной распределительной сетью имеют: меньшую трудоемкость строительно-монтажных работ, следовательно более короткие сроки ввода в эксплуатацию; меньшие начальные затраты и малый срок окупаемости; большую гибкость и легкую транформацию; несомненные преимущества при сооружении сети на сильно пересеченной местности с большим числом водных преград и водоемов, а также в случае сложных грунтов.

Применение оборудования WLL экономически оправдано во многих практических приложениях, например: при создании операторами новой сети радиодоступа с частичным использованием существующих линейно-кабельных сооружений в городских и пригородных районах; при телефонизации сельских районов, где телефонная плотность (число абонентов на квадратный километр) невелика и прокладка длинных кабельных абонентских линий может оказаться невыгодной; при подключении абонентов в условиях отсутствия свободных пар в кабеле на абонентском участке ГТС ( при средней телефонной плотности); при невозможности прокладки кабеля, например, в труднодоступных районах; при организации временной связи, например, для организации выставок.

Наиболее широко в оборудовании радиодоступа применяются перечисленные ниже стандарты: СТ-2 (и ее модификации), DECT (PRE-DECT), PНS. MGW Hopping (MultiGain Wireless).

Технология СТ-2 использует метод множественного доступа с частотным разделением каналов FDMA, совмещенный с временным дуплексным разделением режимов передачи и приема TDD. при котором в одном временном интервале осуществляется передача сообщения от абонента, а в следующий момент - прием сообщения от базовой станции. Таким образом используется только одна несущая частота для передачи и приема информации.

Такой стандарт принят, например, для создания системы Telepoint. предназначенной для связи подвижных абонентов с абонентами фиксированной сети. Эта система получила в Европе широкое распространение: в Великобритании это системы Phonepoint и Zonephone, в Германии это служба Birdie. Стандарт СТ-2 обеспечивает конфиденциальность переговоров и высокое качество приема речевых сообщений.

В стандарте DECT используется временное разделение каналов TDMA в сочетании с таким же, как в стандарте СТ-2, временным дуплексным разделением TDD. Предусматривается возможность присоединения к цифровым сетям ISDN. Технология DECT может применяться как для построения оборудования абонентского радиодоступа, так и радиотелефонной бесшнуровой связи.

В странах СНГ, в том числе России разрешено применение оборудования стандартов СТ-2, работающее в полосе частот 864-868,2 МГц, и оборудование DECT, работающее в полосе 1880-1900 МГц.

Беспроводные локальные сети — это технологии, позволяющие создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Wireless LAN (англ. Wireless Local Area Network; WLAN) — беспроводная локальная вычислительная сеть. При таком способе построения сетей передача данных осуществляется через радиоэфир, объединение устройств в сеть происходит без использования кабельных соединений. Наиболее распространенными на сегодняшний день способами построения являются Wi-Fi и WiMAX.

Контрольные вопросы

  1. Перечислить основные типы сетей беспроводного абонентского доступа.

  2. Классификация беспроводных видов связи (технологии).

  3. Особенности системы персонального радиовызова подвижной связи (СПРВ).

  4. Перечислите классы сетей подвижной связи.

  5. Что понимается под термином «транкинг»?

  6. Какие существуют системы транкинговой связи?

  7. Ключевая особенность спутниковой связи.

  8. Наиболее распространенные способы построения беспроводных локальных сетей?

  1. Оптические системы беспроводной связи.

    1. Оптические беспроводные системы. Различие беспроводной оптической и радиосвязи.

Беспроводные оптические линии связи используют спектральный диапазон лазерного инфракрасного излучения (как правило, от 400 до 1400 нм). Этот участок спектра соответствует так называемому "окну прозрачности" атмосферы, благодаря чему поглощение излучаемого сигнала атмосферными газами пренебрежимо мало. Предельные скорости передачи информации по инфракрасному каналу не превышают 5-10 Мбит/с.

Инфракрасные каналы делятся на две группы:

- каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможно только при отсутствии препятствий между компьютерами сети. (протяженность канала прямой видимости может достигать нескольких километров);

- каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий (препятствия в данном случае не страшны, но связь может осуществляться только в пределах одного помещения).

Установка широкополосных линий связи между коммерческими, муниципальными и жилыми зданиями может быть очень необходимой с одной стороны, но проблемной с другой. Есть несколько способов подключения и объединения в единую сеть локальных вычислительных сетей (ЛВС), расположенных в разных зданиях. В том числе можно использовать волоконно-оптический кабель, арендовать «темное» оптоволокно, воспользоваться услугами оператора связи и установить беспроводные системы. Дороги, улицы, автомобильные стоянки, водные преграды, железнодорожные линии, системы и блоки кабельной канализации часто создают серьезные препятствия для прокладки проводных магистральных линий между зданиями. Да и надо учитывать то, что прокладка кабелей по улице может обойтись заказчику довольно дорого. Широкополосные арендованные линии, несмотря на простоту реализации, также являются дорогостоящим вариантом.

Беспроводные системы приобрели широкую популярность из-за простоты реализации и надежности, которая не уступает по надежности решению на основе проводных сетей. В отличие от проводных и арендованных линий связи, беспроводную систему можно быстро развернуть и устанавить в случае необходимости. Не существует технологии или решения, которое было бы в равной степени пригодно во всех ситуациях, и каждое средство связи имеет как преимущества так и недостатки. Эта статья посвящена атмосферной оптической линии связи (Free Space Optics, FSO) (русский аналог АОЛС – атмосферная оптическая линия связи), технологии двунаправленной передачи данных, основанной на излучении и приеме пучка световых лучей. Эта технология является привлекательной, надежной и по приемлемой цене. В статьей также приводится сравнение оптических беспроводных систем: атмосферной оптической линии связи и более широко известной радиочастотной.

Что такое система FSO?

В системах FSO для широкополосной передачи данных, голоса и видео от одной точки доступа к другой применяют лазерный луч, распространяемый в зоне прямой видимости по воздуху. Эту технологию можно считать беспроводным эквивалентом проводной оптической связи, осуществляемой по оптическому волокну. Модули FSO подключаются к локальной вычислительной сети с помощью медных или волоконно-оптических кабельных линий, которые отвечают требованиям стандартов TIA и EIA. Любое приложение, данные которого можно передавать через Интернет, а именно речь, данные и видео, может использовать систему FSO.

Системы FSO предлагаются в двух модификациях, в каждой из которых окно передачи имеет разный диапазон длин волн: одно окно работает в диапазоне 780-850 нм, а другое использует длины волн 1520—1600 нм. Системы FSO с длиной волны 780-850 нм надежны, экономически целесообразны и пригодны для большинства приложений, в том числе для сетей 1 Gb/s Ethernet. Системы атмосферной оптической линии связи с длиной волны 1520—1600 нм подходят для передачи данных с более высокой мощностью и на большие расстояния.

Есть много статей о влиянии атмосферных явлений на беспроводные средства связи и в том числе о влиянии тумана на рабочие параметры систем FSO. Отметим, что там, где расстояние между точками доступа меньше 500 м (типичная длина линии связи между зданиями), нет никаких видимых различий между этими двумя технологиями, независимо от оптической плотности воздуха. Однако надо помнить то, что системы, работающие на длинах волн 1520—1600 нм могут стоить в несколько раз больше, чем системы с длинами волн от 780 до 850 нм.

Стандартные системы FSO имеют скорость передачи данных от 6 Мб/с до 1.25 Гб/с. На реальном объекте в большинстве систем скорость передачи ограничивается пропускной способностью локальной сети, которую она может поддерживать. Пропускная способность линии FSO не определяется частотой передачи сигнала, а зависит от способности отправлять и принимать оптический сигнал с максимально возможной скоростью. Если передается и принимается достаточная мощность пучка света в системе FSO, то скорость передачи данных остается высокой.

Давайте сравним систему FSO с волоконно-оптической линией связи. В волоконно-оптической сети скорость передачи данных не уменьшается из-за ослабления сигнала, а данные либо не передаются вообще, либо передаются с большим количеством ошибок. Если уровень вносимых потерь (затухания) в волоконно-оптической линии связи будет слишком высоким, передача данных будет невозможна. Наоборот, беспроводная система FSO реагирует на ослабление мощности принимаемого сигнала уменьшением скорости передачи данных. Канал на оборудовании FSO, который в ясную погоду работает со скоростью 24 Мб/с, будет передавать данные во время непогоды со скоростью 18 Mб/с, 12 Mб/с или 6 Mб/с.

Влияние погоды

При передаче света атмосферные факторы могут вызывать рассеивание и ослабление лазерного луча, передваемого между двумя устройствами, и приводить к потере сигнала или, в худшем случае, к ошибкам передачи. Самым сильным атмосферным фактором, который влияет на передачу данных системы FSO, является туман. Поскольку туман является непостоянным природным явлением, возможность работы системы оценивают с помощью предельного расстояния (видимость), на котором система может работать в ясную погоду. В условиях тумана, расстояние, на которое передаются инфракрасные лучи, приблизительно в два раза меньше. Поэтому при плохих погодных условиях видимость уменьшается почти в два раза. Если система FSO установлена с учетом того, что видимость упадет во время тумана в два раза, то система будет поддерживать связь и во время непогоды. Дождь, снег и загрязняющие вещества могут также влиять на затухание сигнала, но обычно они имеют намного меньшее влияние, чем туман. Кстати, в дождливую погоду системы FSO работают лучше, чем радиочастотные системы. Эффективным средством противодействия погодным условиям является использование сфокусированного пучка в сочетании с функцией автоматического выравнивания.

Корректировка пучка света

Корректировка пучка является важным фактором производительности системы FSO. Даже при надлежащей установке, приемник FSO очень восприимчив к перемещению или смещению пучка света. Смещение могут вызывать такие обычные погодные явления как ветер, но оно может также быть связано с изменением температуры. Для корректировки пучка света в системах FSO применяют два основных способа:

узкий, сфокусированный пучок света с автоматической корректировкой смещения

широкий пучок света без корректировки.

Системы с автоматической корректировкой в состоянии устранять смещение, до того как неделательное смещение приведет к нарушению передачи. Расстояние и скорость передачи являются главными факторами при определении необходимости автоматической корректировки. Короткие, до 200 метров, линии со скоростью передачи 10 Мб/с менее уязвимы, чем 500 метровые линии со скоростью передачи 1.25 Гб/с. Широкий пучок увеличивает зону приема. Однако серьезным недостатком является то, что более широкий пучок в большей степени подвержен затуханию и поэтому более восприимчив к погодным условиям.

Влияние преград в пределах прямой видимости

Преграды в пределах прямой видимости могут уменьшать скорость передачи данных. Однако опытный установщик может учитывать преграды для уменьшения потенциальной возможности прерываний передачи. Временные преграды, например птицы, обычно не являются причиной прерывания передачи. Если птица пересечет лазерный луч, мощность принятого сигнала уменьшится, но все-таки будет достаточной для передачи данных. Если большой объект полностью преградит путь лучу, передача данных будет временно прервана. Если в сети используются протокол TCP/IP, эта проблема будет решена с помощью повторной передачи пакета данных.

Безопасность

Безопасность имеет особое значение во всех системах беспроводной связи. Поскольку радиочастотные системы излучают сигналы во всех направлениях, то сигналы можно просто и легко перехватывать. Поэтому для повышения безопасности радиочастотных сетей обычно применяют кодирование и различные средства защиты передаваемой информации. Однонаправленный луч света атмосферной оптической линии связи перехватить трудно. Поскольку системы FSO обычно устанавливают на крышах, то нарушителю нужно преодолеть физическую преграду и попасть на крышу. Да еще нужно перехватить луч света и постараться при этом не прервать передачу данных. У многих производителей систем FSO простые модели точек доступа очень похожи на камеры слежения, что является сдерживающим фактором для потенциальных вредителей.

Экономическая целесообразность

В своих пределах система FSO является выгодной альтернативой проводным системам. Фактически, для решения одной и той же задачи системы FSO могут стоить в несколько раз меньше, чем прокладка волокон-оптических кабелей. Они могут быть достаточно быстро развернуты на объекте, в течение нескольких дней. Рытье траншей является не только дорогостоящим мероприятия, но и наносящим вред окружающей среде. В нескольких городах США собираются даже принять мораторий на прокладку волоконно-оптических кабелей в траншеях. Линии FSO обходятся дешевле и более выгодны, чем аренда линий связи у провайдера.

Сравнение FSO и радиочастотной системы

При условии, что система FSO имеет указанные выше способности в различных условиях, важно сравнить (ее) с системами беспроводной связи, основанными на радиосигналах. В таблице 1 показаны преимущества каждой системы.

Таблица 1.

ФАКТОР

АТМОСФЕРНАЯ ОПТИЧЕСКАЯ СИСТЕМА

РАДИОЧАСТОТНАЯ СИСТЕМА

Полоса пропускания

10 Мб/с — 1.25 Гб/с

11Мб/с – 100 Мб/с

Скорость передачи

Определяется сетью

Определяется частотой

Погода

Лучше при дожде

Лучше при тумане

Препятствия

в прямой видимости

Не допустимы

Допустимы

Безопасность

Сигнал трудно перехватить

Сигнал легко перехватить

Стоимость систем

$15,000-$35,000

$1,000-$50,000

Беспроводные оптические каналы

При расстояниях до 1-5 км во многих случаях становятся привлекательны каналы с открытым лазерным лучом.

Следует иметь в виду, что лазерному лучу из-за поглощения в атмосфере проще преодолеть расстояние от Земли до Луны, чем от ТВ-башни в Останкино до шуховской башни.

Беспроводная оптика рассматривается в качестве решения: -когда прокладка кабеля невозможна (промзоны, горная местность, железная дорога) или стоимость этой прокладки велика;

-когда необходимо срочно организовать канал связи;

-когда требуется закрытый канал связи, не восприимчивый к радиопомехам и не создающий их (аэропорты, близость радиолокаторов, линий электропередач).

    1. Организация связи посредством оптической беспроводной связи. Компоненты и элементы оптической беспроводной связи.

Типы устройств. Построение всех инфракрасных систем передачи практически одинаково: они состоят из интерфейсного модуля, модулятора излучателя, оптических систем передатчика и приемника, демодулятора приемника и интерфейсного блока приемника. В зависимости от типа используемых оптических излучателей различают лазерные и полупроводниковые инфракрасные диодные системы, имеющие разные скорости и дальность передачи. Первые обеспечивают дальность передачи до 15 км со скоростями до 155 Мбит/с (коммерческие системы) или до 10 Гбит/с (опытные системы). Главное преимущество полупроводниковых диодов заключается в высоком времени наработки на отказ. Кроме того, такие каналы менее чувствительны к резонансному поглощению в атмосфере. Недостатки полупроводниковых диодов и, соответственно преимущества лазерных, заключаются в том, что из-за широкой полосы излучения существуют теоретические сложности в передаче высокоскоростного сигнала. Передатчик должен передавать как можно более узкополосный сигнал с наименьшим количеством мод. Лазерные диоды как раз и обладают такими свойствами, но чем уже полоса сигнала, тем больше потенциальная вероятность того, что сигнал попадет в атмосфере в резонансную полосу поглощения какого-нибудь газа и качество сигнала снизится.

ИК-технология

Эта технология является, пожалуй, одной из “древнейших” беспроводных технологий “последнего дюйма” и наиболее отработанной в настоящее время. Она нашла широкое

применение для оперативной беспроводной связи между офисными компьютерами, в

пультах дистанционного управления бытовой техники (телевизоров, музыкальных

центров, кондиционеров) и т.п. Сегодня она активно используется для связи цифровых

фотоаппаратов и мобильных радиотелефонов с компьютером и для ряда других применений.

ИК-технология позволяет осуществлять в инфракрасном (ИК) диапазоне беспроводную

связь между устройствами, удаленными на расстояние нескольких метров.

Инфракрасная связь – IR (InfraRed) Connection – безопасна для здоровья, не создает помех в радиочастотном диапазоне и обеспечивает конфиденциальность передачи. В настоящее время различают инфракрасные системы низкой (до 115,2 кбит/с), средней (1,152 Мбит/с) и высокой (4 Мбит/с) скорости. Низкоскоростные системы служат для обмена короткими сообщениями, высокоскоростные – для обмена файлами между компьютерами, подключения к компьютерной сети, вывода на принтер, проекционный аппарат и т.п. В ближайшее время ожидается появление более высоких скоростей обмена, которые позволят передавать “живое видео”. Для обеспечения совместимости оборудования от различных производителей в 1993

году создана ассоциация разработчиков систем инфракрасной передачи данных IrDA (Infrared Data Association). В настоящее время действует стандарт IrDA 1.1, наряду с которым всё ещё существуют и собственные системы фирм Hewlett Packard (HP-SIR) и Sharp (ASK IR).

Излучателем для ИК-связи является светодиод, имеющий пик спектральной характеристики мощности на длине волны 880 нм. Этот светодиод при передаче дает конус эффективного излучения с углом около 30 град. В качестве приёмника используют PIN-диоды, эффективно принимающие ИК-лучи в конусе 15 град.

Спецификация IrDA обеспечивает уровень битовых ошибок не более 10-9при дальности до 1 м и дневном свете (освещенность – до 10 клюкс). Для передачи сигналов используют двоичную модуляцию и различные схемы кодирования.

Программное обеспечение позволяет устанавливать соединение с локальной сетью

(для выхода в Интернет, использования сетевых ресурсов), выводить данные на печать, синхронизировать данные PDA, мобильного телефона и настольного компьютера, выгружать отснятые изображения из фотокамеры в компьютер и выполнять ряд других полезных действий, не думая о кабельном хозяйстве.

Контрольные вопросы

1. Каким образом передается сигнал в системе беспроводной оптической связи?

2. Перечислите преимущества беспроводной оптической связи.

3. Назовите недостатки беспроводной оптической связи.

4.Типы беспроводной оптической связи

5. Возможные области применения беспроводных оптических систем.

6.Оптическая беспроводная связь, ее особенности.

7. На какие группы делятся инфракрасные каналы связи?

8. Основные технические характеристики системы инфракрасной передачи данных IrDA.

  1. Технические основы построения систем мобильной связи.

    1. Технические концепции построения СМС. Организация линий связи между абонентской станцией, базовой станцией и между базовыми станциями. Определение радиуса зоны уверенного приема. Модели радиосигналов с замираниями, обусловленными многолучевым распространением. Вероятностный характер распространения радиоволн в условиях города.

Профессиональными системами мобильной или подвижной радиосвя­зи PMR (Professional Mobile Radio) называются телекоммуникационные системы, использующие в качестве каналов связи радиоканал и преду­сматривающие использование нестационарных (носимых) пользователь­ских терминалов. Как правило, они имеют радиальную или радиально-зоновую (сотовую) структуру сети и могут использовать как симплексные (односторонние), так и дуплексные каналы (двухсторонние) каналы связи. При этом предполагается, что сама система может использовать для своих служебных нужд и управления коммутируемые и выделенные проводные линии электросвязи и оборудование стационарных систем телефонной связи общего пользования - PSTN (англ. Public Switched Telephone Network). В связи с большим количеством различных по функционально­му составу и назначению систем мобильной связи в международной трак­товке для обобщенной классификации используется термин «система свя­зи подвижной службы (ССПС)».

Система связи подвижной службы общего пользования является двухуровневой составной телекоммуникационной сетью, включающей систему мобильной радиосвязи PMR (первый уровень) и телефонную сеть общего пользования - PSTN (второй уровень). Двухуровневая телекомму­никационная сеть обеспечивает функции коммутации и распределения информации в каждой из составных частей - рис. 8.1.

Участки «1» составной сети являются радиолиниями, образованными между мобильными станциями (MS) и базовыми станциями (BS). Участки «2» сети представляют многоканальные соединительные линии между BS и центром коммутации подвижной службы (ЦКПС). Участки «3» сети яв­ляются магистральными соединительными линиями (МСЛ) между радио­уровнем и фиксированной сетью PSTN. Множество базовых станций, раз­мещаемых по всей зоне обслуживания системы, позволяет обеспечивать устойчивую радиосвязь любого мобильного абонента радиоуровня, в ка­кой бы точке зоны обслуживания он не находился, с другим мобильным абонентом или с абонентом фиксированной сети PSTN через ЦКПС. Та­ким образом, ЦКПС выполняет роль автоматического радиокросса, обес­печивающего коммутацию между собой различных мобильных станций в зоне обслуживания, коммутацию MS с абонентскими телефонными аппа­ратами сети, а также выход на ЦКПС других зон обслуживания.

Увеличение плотности размещения базовых станций BS в зоне об­служивания позволяет сократить протяженность линий мобильной радио­связи между MS и BS. Это, однако, не гарантирует предоставление и по­лучение высококачественной радиосвязи в течение длительного времени из-за экранирования антенн MS и BS при работе в движении, особенно в условиях сильнопересеченной местности и воздействия помех.

Участки «1» составной сети (первичный пучок линий) могут рассмат­риваться как линии с кратковременным занятием. Такие линии в процессе установления связи могут вести себя как исправные, но из-за переходов в состояния плохого качества они не могут использоваться для дальнейшего обслуживания разговоров. Переходы линий радиосвязи в различные со­стояния и эквивалентны потерям вызовов.

Участки «2» составной сети могут строиться на основе линий радио­релейной связи (РРС), волоконно-оптических линий связи (ВОЛС) и ка­бельных линий связи (КЛС). Процессы коммутации и распределения ка­налов связи на участках «1» и «2» могут рассматриваться как процессы установления транзитной связи между мобильными станциями MS и ЦКПС через базовые станции BS.

Рис. 8.1 Составная двухуровневая телекоммуникационная сеть

Участки «3» составной сети формируются на основе выделенных ка­налов фиксированной сети PSTN. Процессы распределения каналов в ма­гистральных соединительных линиях рассматриваются как предоставле­ние свободных линий связи для обслуживания транзитных разговоров между абонентами MS и абонентами сети PSTN в требуемые моменты времени.

Т. о., каналы ССПС являются составными каналами, объединяющими радиоуровень (PMR) и уровень фиксированной сети (PSTN) телекомму­никационной системы.

В настоящее время в различных странах мира применяются различ­ные виды ССПС, которые обеспечивают информационные потребности экономики этих стран. Деление ССПС на виды определяется структурным построением радиоуровня - рис. 8.2.

Рис. 8.2 Классификация систем связи подвижной службы

В основе разделения региональных СПСС лежат способы организа­ции радиосвязи. Глобальные СПСС различаются способом соединения различных зон обслуживания. Системы персонального радиовызова де­лятся на группы по способу организации радиовызовов.

Целью анализа распространения радиоволн является расчет дальности радиосвязи и определение реальных характеристик принимаемого сигнала. Классический подход к расчету распределения электромагнитного поля в присутствии отражающих и поглощающих объектов заключается в расчете напряженности поля в однородном изотропном пространстве на основе законов отражения, дифракции и рассеяния. Однако специфические условия города исключают возможность непосредственного применения такой методики. Непостоянство расположения приемников и передатчиков в мобильной сети радиосвязи, перемещение приемников, передатчиков и препятствий, огромное количество фиксированных препятствий сложной формы делают невозможным точный расчет распределения радиополя. Возникающие при таких расчетах трудности описания реального расположения и передвижения препятствий, требуемый объем вычислений далеко превосходят все существующие технические возможности. Поэтому точный расчет распределения поля используется только в исключительных, простейших случаях, например

при расчете теневой зоны за очень большим зданием при точно известном расположении передатчика базовой станции. Реальный расчет распределения электромагнитного поля осуществляется на основе двух моделей:

«большого расстояния» (large scale model);

«малого расстояния» (little scale model).

В модели «большого расстояния» рассматривается влияние на электромагнитное поле макроэффектов, обусловленных препятствиями большого размера (по сравнению с длиной волны). Согласно этой модели электромагнитное поле в городских условиях описывается теми же самыми уравнениями, что и для свободного пространства, но с иными параметрами распространения, а также некоторой вероятностью отклонения реальных значений

распределения радиополя от расчетных. Предполагается, что наличие препятствий “в среднем” не влияет на структуру электромагнитного поля, которое остается таким же, как и в свободном пространстве, а именно стационарным,монотонным игладким.Стационарность означает неизменность структуры поля во времени,монотонность непрерывное убывание величины поля с увеличением расстояния от приемника до передатчика,гладкость – соответствие малых изменений расстояния малым изменениям

напряженности поля.

Вместе с тем совершенно очевидно, что параметры распространения радиоволн в городе отличаются от параметров распространения в свободном пространстве. Напряженность электромагнитного поля в городских условиях уменьшается с расстоянием значительно быстрее, чем вторая степень расстояния, из-за рассеяния электромагнитных волн на многочисленных препятствиях. В результате взаимодействия с препятствиями только некоторая часть мощности передатчика дойдет до приемника, остальная часть либо будет поглощена препятствием, либо отразится под произвольным углом и пройдет мимо приемника. Кроме того, уменьшающаяся «в среднем» напряженность поля реально испытывает флуктуации, вызванные экранирующим действием отдельных зданий, сооружений и складок местности. Распределение теневых и освещенных областей в сложной, нерегулярной городской застройке и пересеченной местности с большой долей достоверности можно считать случайным. В результате напряженность поля в каждой точке пространства лишь с некоторой вероятностью равна средней, реально испытывая случайные флуктуации около среднего значения, монотонно уменьшающегося по мере удаления от передатчика. Принято говорить, что флуктуации напряженности поля вызывают медленные замирания сигнала на антенне приемника. Практически глубина медленных замираний, зависящая от величины дисперсии случайного распределения напряженности поля, определяет процент территории, на которой гарантируется величина сигнала, обеспечи-

вающая нормальную работу радиостанции.

Модель «большого расстояния» лежит в основе всех методик расчета дальности радиосвязи, отличающихся друг от друга только способом введения коэффициентов коррекции, отражающих реальные условия распространения, в формулы распространения поля в свободном пространстве. Сколько-нибудь серьезного теоретического обоснования того или иного способа введения дополнительных коэффициентов не существует. Все варианты определения поправочных коэффициентов к скорости уменьшения поля с расстоянием, а также дисперсии случайного отклонения напряженности поля от среднего значения опираются на экспериментальные данные, полученные в различных городах, на разных частотах, в различных географических условиях, в разное время суток и т. д. Результатом расчета по модели «большого расстояния» является вероятное значение напряженности поля на некотором расстоянии от излучателя. Расчет усредненного поля в приближении «большого расстояния» применяется при проектировании сетей связи, для оптимизации расположения и величины мощности базовых передатчиков путем определения размеров зоны уверенного приема, зон взаимного перекрытия передатчиков, теневых и освещенных зон и т. д.

Модель «малого расстояния» отражает интерференционную структуру электромагнитного поля, возникающую вследствие взаимодействия когерентных волн, излученных передатчиком. Суммарная величина электромагнитного поля в каждой точке пространства определяется амплитудами и фазами нескольких когерентных волн, которые за счет многократных отражений прошли путь различной длины от передатчика до данной точки приема.

Очевидно, что на значительном расстоянии от передатчика амплитуды и фазы волн статистически независимы и в результате получается интерференционная картина поля в виде случайного чередования максимумов (сложение в фазе) и минимумов (сложение в противофазе) поля. Поскольку расстояние между минимумами и максимумами в интерференционной картине поля равно четверти длины волны, то и существенные изменения величины напряженности поля также происходят на очень малых расстояниях, порядка нескольких сантиметров в диапазоне УКВ.

Структура поля на малых расстояниях является не гладкой, не монотонной и не стационарной. Увеличение или уменьшение напряженности поля не связано с расстоянием до передатчика, так как определяется случайным состоянием радиоканала (взаимным расположением и передвижением приемника, передатчика и препятствий) в текущий момент времени. В результате возможны очень сильные изменения величины электромагнитного поля на небольших расстояниях и в короткие промежутки времени. С точки зрения теории сигналов нестационарная интерференционная структура поля соответствует приему нескольких копий одного и того же сигнала. Идеальный сигнал передатчика достигает приемника несколькими путями различной длины, что и приводит к появлению в приемнике нескольких копий сигнала, каждая из которых имеет собственное время распространения. Накладывающиеся друг на друга копии сигнала вызывают искажение формы принимаемого сигнала, которые характеризуются как быстрые замирания величины принимаемого сигнала на антенне приемника. Величина быстрых замираний принимаемого сигнала определяется мгновенным состоянием многолучевого канала распространения, т. е. перемещением

передатчика, приемника и препятствий между ними, а также скоростью этих перемещений. Практически величина поправки на быстрые замирания определяет процент времени, в течение которого величина напряженности поля превышает заданную величину.

Расчеты по модели «малого расстояния» позволяют определить реальную структуру и статистические характеристики сигнала в локальной области пространства (точке приема), который отличается от идеального сигнала на выходе передатчика вследствие многолучевого распространения радиоволн и перемещения приемника, передатчика и препятствий между ними.

Основой расчета дальности радиосвязи по модели «большого расстояния» является формула для распространения радиоволн в свободном пространстве с соответствующими поправочными коэффициентами

В соответствии с ней мощность сигнала в точке приема, на заданном рас-

стоянии от передатчика в логарифмическом виде равна

, (8.1)

где P(d) – мощность сигнала на расстоянииd от передатчика, дБм;P– мощность передатчика, дБм;L0– коэффициент потери мощности от выхода передатчика до точки в эфире, находящейся в непосредственной близостиd0от антенны передатчика, дБ; γ – коэффициент затухания радиоволн при распространении в городской среде.

Коэффициент потери мощности L0 устанавливает соотношение между активной мощностью передатчика, измеренной на эквиваленте нагрузки, и мощностью излученного сигнала в непосредственный близости от антенны передатчика. Этот коэффициент включает все параметры антенно-фидерного тракта передатчика и параметры антенны, а именно: коэффициент передачи высокочастотного фидера, коэффициенты передачи устройств согласования и защиты, кпд и коэффициент направленного действия антенны. Коэффициент затухания радиоволн = (2…5) определяет величину потерь при распространении радиоволн в городских условиях. Превышение величины этого коэффициента над теоретическим значением = 2 для свободного пространства отражает величину дополнительных потерь вследствие поглощения и отражения радиоволн естественными и искусственными препятствиями. На величину влияют плотность городской застройки, преобладающий тип зданий (бетон, кирпич, дерево), характер подстилающей поверхности (земля, вода, лес).

Рассмотренная выше модель характеризуется быстрыми колебаниями уровня сигнала вокруг среднего значения. Даже незначительные изменения расположения подвижной станции могут стать причиной существенных изменений уровня принимаемого сигнала. С точки зрения проектирования систем радиосвязи представляет интерес определение зависимости средней мощности сигнала от расстояния до базовой станции. Обычно измерения усредняются на интервале от 5 до 40, где – длина волны несущей.

В частотном диапазоне от 1 до 2 ГГц локальная мощность усредняется на отрезке от 1 до 10м. Результат измерений зависит от расстояния до передающей станции, а также от реальной конфигурации основных препятствий, искажающих и отражающих элементов вдоль путей распространения сигнала к приемнику, но не в непосредственной близости от него. Этот вид информации необходим для разработки систем сотовой связи. Т. о., в лога-

рифмическом масштабе средняя мощность снижается линейно с увеличением расстояния d. Скорость падения составляет 10γ дБ на декаду.

Параметр γ определяется местными условиями распространения сигнала – табл.8.1.

Таблица 8.1 Значения γ для различных типов окружающей среды

Тип среды

Значение коэффициента γ

Свободное пространство

2

Сотовая радиосвязь в городе

2,75…3,5

Затененная сотовая радиосвязь в городской местности

3…5

В здании на линии прямой видимости

1,6…1,8

В здании с препятствиями на линии распространения радиосигнала

4…6

На предприятиях с препятствиями на линии распространения радиосигнала

2...3

Формула (8.1) характеризует зависимость среднего уровня принятой мощности от расстояния до передающей антенны.

Было замечено, что замеры мощности в различных местах, находящихся на одинаковом удалении от передающей антенны, могут давать совершенно разные результаты [2].

Это явление обусловлено различным расположением препятствий, отражающих, рассеивающих и снижающих уровень сигнала; оно называется радиозатенением.

Измерения показывают, что принимаемая мощность – это случайная величина. Более того, ее распределение в логарифмическом масштабе – гауссовское, т. е.

,

где X(0, б) – случайная величина с гауссовским распределением, нулевым

средним и дисперсией б2. Т. о., в линейном масштабе принимаемая мощность имеет лога-

рифмически нормальное распределение.

Зная распределение в логарифмическом масштабе, особенно дисперсию б2, можно рассчитать вероятность того, что уровень принимаемого в заданной точке сигнала превышает определенный порог. Такие расчеты используются для оценки зоны радиопокрытия базовой станции. Распространение радиосигнала по местности с такими препятствиями, как строения, неровности поверхности, деревья и кусты – это настолько

сложный процесс, что разработчики системы часто производят замеры электромагнитного поля в определенных участках местности для того, чтобы определить реальную зону обслуживания базовой станции. Эти замеры чрезвычайно дороги, и в связи с этим на основе собранных экспериментальных данных для различных типовых условий разработано несколько моделей распространения сигнала, позволяющих оценить медианные потери мощности в зависимости от расстояния d до базовой станции, типа среды распространения, а также высот передающей и приемной антенн.

Наибольшая точность расчетов обеспечивается при непосредственном применении уравнения, описывающего модель «большого расстояния», с использованием экспериментально измеренных параметров модели для конкретного региона.

    1. Методы и цели разнесения сигналов. Сравнение различных методов разнесения сигналов БС. Применение методов разнесения сигналов в подвижной радиосвязи (на примере сотовой связи стандарта GSM). Улучшение характеристик помехоустойчивости.

Разнесение - метод борьбы с замираниями (многолучевыми замираниями), основанный на организации нескольких каналов для приема сигналов с одной и той же информацией. Согласно теории, выигрыш от разнесенного приема достигается лишь в том случае, если сигнал, попадающий по нескольким независимым путям в точку приема, имеет примерно одинаковую среднюю мощность лучей (только тогда можно утверждать, что хотя бы один из приходящих сигналов не будет подвержен глубоким замираниям).

Существует два основных класса методов борьбы с замираниями: явное и неявное разнесение.

При явном разнесении по каналу связи передается один или несколько избыточных сигналов, содержащих ту же полезную информацию, что и основ­ной луч. В настоящее время наиболее часто применяются три способа явного разнесения – пространственное, частотное и временное.

При неявном разнесении избыточные сигналы не используются. Их роль играют несколько независимых копий сигнала, которые образуются на входе приемника за счет эффекта декорреляции сигнала в многолучевом канале.

Методы разнесения. Пространственное разнесение стало самым первым методом борьбы с замираниями: оно было реализовано еще в 1927 г. и базировалось на использовании нескольких антенн. Чтобы обеспечить эффективный прием, например, на две антенны, достаточно разнести их на расстояние не менее 10 или 20 λнн– длина волны). Хотя в этом случае дополнительный частотный ресурс не требуется, необходимость применения дополнительных антенн значительно усложняет оборудование станции.

Существует несколько видов пространственного разнесения. На базовых станциях в основном реализуется пространственное разнесение в горизонтальной плоскости. Разнесение в вертикальной плоскости (угловое) применимо лишь в сетях микросотовой связи, где допускается достаточно большой разброс по углу приема сигналов.

Если задействуется другая разновидность пространственного разнесения – поляризационное, то сигналы передаются и принимаются с разными ортогональными поляризациями (вертикальной и горизонтальной). И хотя в таком случае дополнительная антенна не нужна, уровень мощности каждого канала становится примерно на 3 дБ меньшим, чем при использовании сигнала одной поляризации. (Здесь следует заметить, что при неявном поляризационном разнесении, когда излучаемый сигнал принимается с помощью одной кросс-поляризованной антенны, уровни мощности в разных каналах могут различаться на 10–12 дБ.)

В системах на базе стандартов 3-го поколения планируется использовать ряд оригинальных методов борьбы с замираниями. Так, для систем стандарта DS-CDMA предусмотрено применение пространственно-кодового разнесения (ортогонального разнесения на передаче, OTD), при котором через каждую из антенн базовой станции излучается своя ортогональная кодовая последовательность. В проекте UTRA (ETSI) предложен другой способ: передаваемый сигнал сжимается во времени и излучается поочередно через две антенны (например, через одну «проходят» только четные пакеты, а через другую – нечетные), причем мощность передатчика «делится» между ними поровну.

Метод частотного разнесения основан на излучении одного и того же сигнала на разных частотах. Выигрыш достигается только в том случае, если интервал между несущими частотами больше ширины полосы когерентности Вc.

Комбинированное пространственно-частотное разнесение планируется реализовать в системе на базе стандарта cdma2000. Многочастотный сигнал будет передается через разнесенные антенны, что не потребует усложнения абонентского терминала, поскольку прием таких сигналов обеспечивается с помощью многоканального Rake-приемника, каждый канал которого настроен на свою многолучевую составляющую.

Временное разнесение в CDMA-сетях играет ту же роль, что и в системах с временным доступом (TDMA). При использовании этого метода для борьбы с пакетами ошибок, которые образуются при глубоких замираниях, применяется поблочное перемежение в сочетании с кодами, исправляющими ошибки. Операция перемежения позволяет декоррелировать пакеты ошибок за счет их преобразования в группу случайных (обычно одиночных) ошибок. Последние эффективно исправляются сверточным декодером. Поскольку при перемежении изменяется лишь порядок следования символов в пределах одного или нескольких кадров, то данный метод не вносит избыточности, а следовательно, не приводит к снижению средней мощности передатчика.

Улучшение характеристик помехоустойчивости. Методы повышения помехоустойчивости, применяемые в системах с кодовым доступом (CDMA) при работе в условиях замираний и многолучевого распространения радиоволн, существенно отличаются от тех, которые используются при приеме узкополосных сигналов.

Чаще всего многолучевость возникает, как результат многократного отражения передаваемого сигнала от зданий и других препятствий на пути распространения радиоволн. Отраженные сигналы могут интерферировать с прямым лучом, имеющим наибольшую интенсивность. Сигналы разных лучей сдвинуты по времени друг относительно друга, что обусловлено различной длиной трассы их прохождения. Поскольку всегда существует несколько путей распространения радиоволн от передатчика к приемнику, то в точке приема разные копии одного и того же сигнала интерферируют друг с другом, создавая глубокие замирания радиоволны, которые в основном и влияют на качество передачи информации и пропускную способность системы.

Кроме эффекта многолучевости при реализации подвижной связи порой возникают доплеровские сдвиги частоты, обусловленные перемещением абонента в процессе сеанса. Вообще говоря, сигналы разных лучей могут иметь различные амплитуды, начальные фазы, задержки и доплеровские сдвиги частоты.

Частотно-временные сдвиги сигналов в многолучевом канале связи вызывают так называемые селективные, т.е. зависящие от времени или частоты, замирания.

При частотно-селективных замираниях отдельные составляющие принимаемого сигнала имеют разные амплитуды и сдвиги начальной фазы, но главное, что разброс задержки сигнала (т. е. разность хода лучей по времени) соизмерим со значением 1/F (F – полоса частот передаваемого сигнала) или превышает его. Этот вид замираний приводит к искажению формы спектра и, как следствие, к снижению качества связи. Однако характер замираний на близко расположенных частотах практически одинаков, а степень корреляции сигналов достаточно высока, поэтому искажения начинают проявляться лишь в том случае, если полоса передаваемого сигнала превышает ширину так называемой полосы когерентности канала – Bc (т. е. сигнал «перехлестывает» область частот, в которой отдельные спектральные составляющие коррелированы). Таким образом, чем шире спектр передаваемого сигнала, тем в большей степени он подвержен частотно-селективным замираниям.

Замирания, при которых характеристики канала связи изменяются с течением времени, вызывая искажение формы передаваемых символов, называются временными селективными замираниями. Сопровождающие их искажения проявляются лишь тогда, когда длительность информационной посылки начинает превышать время когерентности Tc (интервал, в пределах которого любые отсчеты сигнала взаимозависимы, а вне его в значительной степени декоррелированы). Время когерентности определяется величиной разброса доплеровской частоты в канале связи, которая зависит от скорости перемещения подвижного обюекта.

    1. Расширение спектра сигнала для понижения уровня шума. Расширение спектра методом прямой последовательности. Многостанционный метод с кодовым разделением каналов. Система со скачкообразным изменением частоты. Расширение спектра с перестройкой во времени.

Различные виды цифровой модуляции были разработаны для того, чтобы максимально использовать ограниченную полосу пропускания, выделенную заданной цифровой системе связи. Клод Шеннон вывел формулу для емкости канала, ограниченного до W (в Гц), в котором сигнал искажается аддитивном белым гауссовым шумом с удельной мощностью N0/2:

,

где Рαν – средняя энергия входного сигнала.

Количество информации, которую можно переслать по каналу с аддитивным белым гауссовым шумом, достигает своей верхней границы, называемой пропускной способностью канала, в случае гауссового входного сигнала. Цифровой сигнал с МС-модуляцией будет иметь гауссово распределение только тогда, когда количество поднесущих велико. В традиционных системах скорость передачи данных достигает максимума и становится близка к предельной пропускной способности канала при максимизации отношения сигнала к шуму.

Такую же пропускную способность канала можно получить, расширяя спектр сигнала до тех пор, пока уровень сигнала не станет ниже уровня шума. Это наблюдение и используется в системах с расширением спектра.

Самый распространенный тип системы с расширенным спектром, обозначаемый в литературе DSSS (расширение спектра методом прямой последовательности, англ. Direct Sequence Spread Spectrum). В системе DSSS спектр цифрового информационного сигнала расширяется путем прямого умножения на псевдослучайную последовательность. Оптимальным для приема сигналов, искаженных белым гауссовым шумом, является корреляционный приемник. Он перемножает искаженный принятый сигнал с известным, синхронизированным по отношению к принятому, опорным сигналом. Опорный – псевдослучайный сигнал, используемый в передатчике для представления информационных битов. Двоичные информационные сигналы имеют биполярное представление, т.е. поляризация псевдослучайной последовательности (ПСП) информационными битами эквивалентна умножению этой последовательности на -1 или +1. На основании выше изложенной можно сделать вывод о том, что ПСП рассматривается в качестве элементарного сигнала, характеризующего один информационный бит, в то время как та же самая последовательность с обратной полярностью представляет собой логическое отрицание бита.

Эффект расширения спектра возможен и тогда, когда период псевдослучайной последовательности превышает длительность одного информационного бита. Система DS-SS представляет собой альтернативу системам с узкополосным каналом. Из свойств взаимной корреляции используемых псевдослучайных последовательностей можно вывести интересную особенность систем с расширенным спектром. Благодаря тому, что корреляционные устройства приемника пропускают только единственную последовательность, один и тот же спектр может разделяться между многими пользователями, применяющими различные псевдослучайные последовательности. Это свойство лежит в основе метода многостационного доступа с кодовым разделением каналов (англ.Cоde Division Multiple Access – CDMA).

Основа CDMA – использование шумоподобной несущей с очень широкой полосой частот. Меняя фазу узкополосного сигнала в соответствии с псевдослучайной цифровой последовательностью, получаем шумоподобный сигнал с широким спектром, несущий информацию. Информационный сигнал как бы «расплывается» по спектру шумоподобного сигнала. В канале связи к сигналу добавятся помехи и сигналы других передатчиков, но они не совпадают по фазе с использованным шумоподобным сигналом. Поэтому после демодуляции получим почти чистую узкополосную составляющую – переданный поток данных.

Если свойства канала изменяются во времени, то может оказаться достаточно сложно обеспечить синхронный прием и, особенно, реализовать восстановление синхронизации с точностью до доли кодового импульса. В этом случае в системах с расширением спектра используются так называемые скачки частоты. При системе со скачкообразным изменением частоты (англ. Frequency Hopping Spreaс Spectrum – FH-SS) биты данных, которые дополнительно могут кодироваться с упреждающей коррекцией ошибок (FEC), воздействуют на выход модулятора частотной манипуляции (FSK). FSK-сигнал сдвигается по частоте на интервал, определяемый псевдослучайным генератором, который управляет синтезатором частот. Если синтезатор может сгенерировать 2m-1 различных частот, то выходная частота определяется m последовательными битами генератора ПСП. Из-за широкого частотного диапазона генерируемых сигналов очень сложно обеспечить фазовую синхронизацию между несущими, выбираемыми при последовательных скачках. Поэтому в приемнике используется некогерентный FSK-демодулятор. Скачки частоты происходят много раз за период трансляции одного информационного бита. Период FSK-модуляции Тb разделен на множество коротких временных интервалов Тh, называемых временем скачка. В этом случае говорят о быстром скачкообразном изменении частоты. Третий тип – системы расширения спектра с (псевдослучайной) перестройкой во времени (англ. Time Hopping Spread Spectrum, TH-SS).

В такой системе период передачи информационного бита разделен на МТ тактов (временных слотов). Генератор ПСП определяет номер временного слота для передачи информационного сигнала. Характерной чертой такой системы является ее пакетная природа. Сигнал передается в течение 1/МТ-й части периода передачи информации. Обычно значение МТ примерно равно 1000. Однако такое количество тактов создает серьезные проблемы с синхронизацией, решить которые намного сложнее, чем проблемы с синхронизацией в системе DS-SS. Для обеспечения равномерной передачи информации по системе TH-SS передатчик и приемник должны быть оснащены буферами памяти. Наибольшее практическое значение имеют системы DS-SS и FH-SS.

    1. Причины нестабильности уровня сигнала мобильной станции в пространстве и во времени. Методы расчета среднего ожидаемого уровня сигнала. Математические модели радиолиний. Модель распространения радиоволн в свободном пространстве. Опорное расстояние. Расчет уровня сигнала.

Особенности условий функционирования, характерные для мобильной радиосвязи приводят к появлению нескольких факторов, существенно усложняющих прием сигналов:

-затухание сигналов при распространении;

-замирания огибающей, вызванные многолучевостью распространения;

-искажение спектра и формы сигнала при селективных замираниях;

-межсимвольная интерференция.

Условия распространения радиоволн включают 5 моделей:

- статическая модель (STATIC);

- для сельской местности (Rax);

- для холмистой местности (НТх);

- для типичной городской застройки (Tux);

- для плотной городской застройки (Bux).

В моделях с динамическими (Rax, HTx, Tux, Вuх) оговорены два варианта изменения параметров, которые соответствуют условиям движения автомобиля в городе со скоростью 50 км/ч и в сельской местности — 200 км/ч. Например, изменение радиосигнала на входе приемника авто­мобильной радиостанции, движущийся со скоростью 200 км/ч в условиях холмистой местности, описывается моделью НТ200.

Дополнительно предусмотрена модель для тестирования эквалайзера (Eqx).

Статическая модель характеризуется отсутствием амплитудных и фазовых искажений сигнала.

Модель распространения сигнала в сельской местности описывает флуктуации сигнала распределением Райса и имитирует постоянный доплеровский сдвиг частоты.

Условия распространения сигнала над холмистой местностью предполагают отсутствие пря­мой радиовидимости между приемником и передатчиком, а также наличие достаточно удаленных переотражающих объектов. Такие условия описываются двухлучевой моделью со средним соотношением уровня лучей минус 8,6 дБ и средней задержкой сигнала во втором луче на четверть символа. Флуктуации сигнала на входе приемника описываются законом Релея.

Модели распространения сигнала в городских условиях предполагают отсутствие прямой ра­диовидимости между приемником и передатчиком, и наличие большого количества переотражающих объектов. Данный случай также описывается двухлучевой моделью, но с другими амплитудными и временными соотношениями. Например, задержка между лучами составляет приблизительно 1/10 символа, то есть сигнал на входе приемника практически не испытывает меж­символьных искажений.

Модель для тестирования эквалайзера применяется только для тестирования аппаратуры класса Е. В данной модели флуктуации сигнала на входе приемника имитируются релеевскими замираниями по четырем лучам с задержкой сигнала в лучах до двух символов.

    1. Двухлучевая модель. Расчет уровня сигнала. Дифракция радиоволн на препятствии. Математическая модель. Расчет напряженности поля за препятствием. Расчет напряженности поля методом Okumura. Метод Hata. Учет профиля трассы при расчете ослабления радиоканалов.

Для рассмотрения влияния многолучевого распространения на прием сигнала и первичного анализа распространения сигнала на пересеченной местности, например, в городских условиях, используется модель двулучевого распространения – значительное упрощение реальной ситуации.

Рассмотрим (приближенно) функцию изменения мощности сигнала взависимости от дальности приема. Чем дальше от антенны – тем меньше уровень сигнала. Если предположить, что расстояние r велико по сравнению с высотами передающей h1 (базовая станция) приемной h2 (мобильная станция) и антенн, то разница между r1 и r2 станет несущественной. Фазовая разность между сигналами, распространяющимися этими путями, составит

.

В итоге, мощность принимаемого сигнала с учетом сделанных допущений, которую для малых углов можно выразить формулой

. (8.1)

Формула (8.1) говорит о том, что появление второго пути распространения, отличного от пути распространения по линии прямой видимости, оказывает серьезное влияние на мощность принимаемого сигнала, функционально зависящего от расстояния до передающей антенны.

Для двулучевого распространения принимаемая мощность обратно пропорциональна четвертой степени расстояния!

Т. о. в логарифмическом масштабе уменьшение мощности составляет 40дБ на десять единиц расстояния, в то время как при однолучевом распространении сигнала в свободном пространстве это уменьшение составляет 20 дБ. Двулучевое распространение – это исключительно теоретический случай, который позволяет понять влияние многолучевого распространения на свойства канала передачи данных. В реальных системах количество путей намного больше и зависит от особенностей окружающей среды.

Мощность сигнала, принимаемого на расстоянии r от передающей антенны, часто описывают выражением

,

где γ – показатель степени, зависящий от условий распространения сигнала и варьируемый от 2 до 5,5.

Основу классической теории распространения радиоволн составляют три эффекта: отражение, рассеяние, дифракция. Все они в усредненном, вероятностном представлении учитываются в эмпирических коэффициентах расчетных формул.

Явление дифракции – огибание радиоволнами крупных экранирующих объектов – объясняется на основании принципа Гюйгенса, согласно которому любая точка фронта распространения волны может рассматриваться как источник вторичных радиоволн, которые, в свою очередь, распространяются во всех возможных направлениях. Дифракция позволяет УКВ-радиосигналам распространяться за горизонт и определяет структуру

поля за препятствием. Благодаря дифракционным эффектам можно с некоторой вероятностью осуществлять связь на УКВ за горизонтом вне прямой видимости передатчика и приемника. Однако реального, практического значения это не имеет. Современные методики построения сетей связи направлены, прежде всего, на обеспечение уверенной радиосвязи в любой точке зоны покрытия. Это предполагает получение избыточно высокого

уровня передаваемой мощности всюду в зоне покрытия, поэтому возможность неустойчивой загоризонтной радиосвязи в УКВ-диапазоне не используется.

Рельеф местности оказывает существенное влияние на потери напряженности поля радиосигналов в месте приема. Поскольку антенны радиостанций находятся в непосредственной близости от земли, то на трассах радиосвязи неминуемо появляются крупномасштабные объекты, которые экранируют приемные антенны от передающих, затрудняя или полностью исключая условия прямой видимости. Чем больше пересеченность местности, тем большее влияние она оказывает на условия прямой видимости станций. Для уточненного расчета зон радиотени от больших протяженных объектов используются известные из теории дифракции формулы зон Френеля.

Ослабление поля сигнала при этом зависит не только от величины просвета трассы радиосвязи, но и от расстояний до экранирующего объекта – рис. 2.4.

Рис. 8.4. Экранирование мобильной станции на трассе радиосвязи

Параметры трассы радиосвязи h0,rA,rB (геометрия препятствия), а также длина волны определяют значение обобщенного параметра потерь –d. Обобщенный параметрd (дифракционный параметр) определяет размеры той части пространства между радиостанциямиА иВ, в которой распространяется основная доля энергии электромагнитного поля, называемой областью существенной для распространения радиоволн. Если величина экрана не будет превышать радиусR первой зоны Френеля

(рис. 8.4 б), то напряженность поля сигнала в месте приема будет практически соответствовать напряженности поля на открытой трассе. Если же величина экрана будет больше радиуса первой зоны Френеля, то, несмотря на формально закрытую трассу,ослабление напряженности поля сиг­нала будет определяться дифракционным параметром d.

Числовое значение параметра d можно определить с помощью угла между направлением от передатчика к вершине препятствия и направле­нием от приемника к вершине препятствия а (рис. 8.5) по следующей фор­муле:

,

где rА, rB - расстояния от приемника и передатчика до препятствия; α- угол между направлением от передатчика к вершине препятствия и направлением от приемника к вершине препятствия.

Рис. 8.5. Расчет дифракционного поля за препятствием

Наличие поля за протяженными препятствиями в условиях города яв­ляется существенным фактором и не может игнорироваться. Реально на­пряженность поля за препятствиями, типичными для городской застройки (длинные и высокие здания, туннели, дворы внутри микрорайонов), впол­не достаточна для нормального приема радиосигнала, и это должно учиты­ваться при определении количества и местоположения базовых радиостан­ций.

В самом простом случае усредненная величина напряженности поля за препятствием определяется в модели Найфа (Knafe) следующим образом:

,

где Gdкоэффициент ослабления напряженности электромагнитного поля за препятствием; ξдп - коэффициент дифракционных потерь; Edнапря­женность электромагнитного поля за препятствием; E0 напряженность электромагнитного в свободном пространстве.

При расчете стационарных (не­подвижных) линий УКВ радиосвязи (для базовых станций) коэффициент ослабления поля сигнала Gd (коэффи­циент дифракционных потерь ξдп, как функцию параметра d, удобно учиты­вать графическим путем с помощью кривой Найфа (рис. 8.6).

Рис. 8.1 Коэффициент ослабления поля в стационарных линиях радиосвязи

В мобильных системах связи в процессе движения подвижной станции MS параметры трасс радио­связи h0, rA, rB.. постоянно изменяются. Рассмотренный выше графический способ оценки коэффициента ξдп ока­зывается непригоден.

Для подвижной системы коэффициент дифракционных потерь оцени­вается экспоненциальной зависимостью:

ξдп = e-βдп;

βдп= z·rэ ;

,

где ξдп - показатель дифракционных потерь; εэ - постоянная затухания экрана; rэ - протяженность экрана; f0 - частота излучения; с - скорость света.

Реальная радиотрасса состоит из отдельных участков с различным уровнем экранирования, поэтому показатель дифракционных потерь трас­сы находится как интегральный показатель.

В основе модели Окамуры (англ. Okumura) также лежит множество измерений. Многочисленные измерения в частотном диапазоне от 150 до 1920 МГц проводились в Токио. Для описания зависимости медианных потерь (L50)dB от расстоянияd до передающей антенны базовой станции была предложена формула

;

, (8.2)

где LS – потери при распространении в свободном пространстве;А(f,d) – медианное значение потерь в городской среде с квазигладкой земной поверхностью по отношению к затуханию в свободном пространстве в случае, если эффективная высота антенны базовой станции

hBS,eff = 200 м, а высота антенны подвижной станцииhMS = 3 м;G(hBS,eff)-корректирующий коэффициент (в дБ), учитывающий отличие эффективной высоты антенны базовой станции от 200 м;G(hMS) – корректирующий коэффициент (в дБ), зависящий от высоты антенны подвижной станции, если она отличается от 3 м.

Потери при распространении в свободном пространстве LS вычисляются в логарифмическом масштабе. Формула (8.1), совместно с полученными эмпирическими графиками, приведенными в [2], позволяет оценить затухание сигнала в условиях городской застройки на частотах от 150 до 2000 МГц, если расстояниемежду подвижной и базовой станциями составляет от 1 до 100 км, а эффективная высота антенны базовой станции лежит в диапазоне от 30 до 1000 м. В настоящее время предложены дополнительные корректирующие члены, позволяющие учесть наклон и неровности местности, а также ее

тип.

В справочной литературе можно обнаружить другой вариант формулы, описывающей модель Окамуры.

Модель Окамуры очень проста. Она основана исключительно на экспериментальных данных, собранных в районе Токио. Характеристики японской городской местности немного отличаются от характеристик городской местности в Европе или США. Несмотря на это, модель Окамуры пользуется популярностью и считается наилучшей моделью для разработ-ки сотовых и других систем наземной подвижной связи. Основной недостаток модели Окамуры – медленная реакция на изменение типа местности. Эта модель лучше всего подходит для городских и пригородных районов и не очень эффективна для сельской местности.

Модель Хата (англ. Hata) возникла в результате адаптации эмпирических формул к графикам, составленным Окамурой и его соавторами. Эти формулы хорошо аппроксимируют графики в определенных диапазонах несущих частот на квазигладкой земной поверхности. Для оценки затухания сигнала Хата предложил следующие эмпирические формулы. В городской местности в частотном диапазоне от 150 до 1500 МГц при эффективной высоте антенны базовой станцииhBS,eff = от 30 до 200 м имеем

(L50)dB|город =69,55+26,16·lgf – 13,83·lg(hBS,eff) – a(hMS)+[44,9 – 6,55·lg(hBS,eff)]·lgd ;

a(hMS) = (1,1·lgf – 0,7)hMS –1,56· lgf +0,8

где a(hMS) – поправочный коэффициент зависящий от высоты антенны подвижной станции и вычисляемый в диапазоне высот от 1 до 10 м.

Для крупного города он задается выражениями (в дБ):

a(hMS) =8,29(lg1,54hMS)2 – 1,1 для f ≤ 400 МГц,

a(hMS)=3,2(lg11,75hMS)2–4,97дляf≥400МГц.

В пригородной местности потери при распространении сигнала можно описать формулой

.

В условиях открытой местности потери описываются выражением

(L50)dB =(L50)dB|город– 4,78(lgf)2+18,33·lgf– 40,94.

Представленные выше модели распространения сигнала позволяют оценить зависимость потерь от несущей частоты, высоты антенн базовой и подвижной станций и типа местности. Они неплохо отражают процессы распространения сигнала на расстояния, превышающие 1 км, и лучше всего подходят для частот до 1,5 ГГц. Однако системы персональной связи

работают в диапазоне от 1,8 до 2,0 ГГц. Примеры таких систем – это DCS 1800 и PCS 1900 – две версии системы GSM, функционирующие в Европе и США соответственно. В связи с этим, для создания моделей распространения сигнала в частотном диапазоне от 1,8 до 2,0 ГГц в условиях, характерных для систем PCS, были поставлены многочисленные экспери-

менты и проведено множество измерений. По причине большего затухания сигнала в диапазоне 1,8 ГГц в сравнении с диапазоном 900 МГц, традиционно применяемым в сотовой телефонии, основное различие между системой PCS и традиционной сотовой системой заключается в уменьшении размера сот. Исследования новых моделей распространения проводились в рамках проекта Европейского Союза COST#231. В результате в справочной литературе представлены, по крайней мере, две известные модели распространения, разработанные в рамках проектов COST:

модель COST231-Хата;

модель COST231-Уолфиш-Икегами.

Контрольные вопросы:

1.В чем особенность разнесенного приема?

2. Какие методы разнесения Вы знаете?

3. Какова суть частотного разнесения?

4. Какие методы существуют для улучшения характеристик помехоустойчивости?

5. При каком замирании отдельные составляющие принимаемого сигнала имеют разные амплитуды и сдвиги начальной фазы?

  1. Беспроводные локальные сети. Семейство стандартов для широкополосного доступа. Системы мобильной связи стандарта 802.16е.

    1. Основные понятия локальных беспроводных сетей. Стандарты и типы беспроводных сетей. Сравнительная оценка по основным характеристикам.

Мобильный WiMAX может обеспе­чить скорость десятки мегабит в секунду для основных конфигураций ба­зовых станций, реализованных согласно системе стандартов (системному профилю) IEEE 802.16, известной также под общим названием WiMAX.

Ниже будут рассмотрены основные новые технические решения, на­пример, адаптивные антенные системы (AAS — Adaptive Antenna System), которые значительно улучшают рабочие характеристики (но без подроб­ного анализа последних).

Сервисные службы, которые могут поддержать такие системы, включают широкополосные услуги, которые требуют высоких скоростей передачи данных, в том числе потоки видео и VoIP с высоким качеством обслуживания.

Характеристики мобильного WiMAX предполагают взаимодействие-между мобильным WiMAX и широкополосными проводными услугами, например, по кабельным и цифровым абонентским линиям типа DSL. Важным требованием для успеха проекта является обеспечение услуг мо­бильного Интернета.

Наращиваемая архитектура, высокая производительность при пере­даче данных и низкая стоимость установки на сети делают мобильный WiMAX лидером беспроводных широкополосных услуг. Другие преиму­щества WiMAX включают открытый подход структуры стандартов, «дру­жественные» интерфейсы и обеспечение здоровой экосистемы.

Множество компаний внесли вклад в развитие технологии, и много компаний объявили о своих планах в этом направлении.

Такая растущая конкуренция гарантирует удовлетворение другого важного требования для успеха технологии — низкую стоимость мобиль­ного Интернета.

    1. Мобильный WiMAX. Основные характеристики и свойства. Основы ортогонального многостанционного доступа с частотным разделением каналов – OFDMA. Структура и формирование OFDMA-подканалов.

Технология Мобильного WiMAX базируется на двух стандартах: на стандарте IEEE 802.16-2004 радиоинтерфейс (Air Interface Standard) и на принятом 7 декабря 2005 года стандарте IEEE 802.16e-2005 (он бу­дет играть ключевую роль при построении фиксированной широкопо­лосной радиосети города). Первая лаборатория для сертификации си­стем этого стандарта развернута в лаборатории Cetecom Labs (Малага, Испания).

7 декабря 2005 IEEE ратифицировал поправки, названные IEEE 802.1бе, к стандартам 802.16. Эти поправки добавляют требования и ха­рактеристики, необходимые для обеспечения работы мобильных абонен­тов WiMAX [53]. WiMAX Forum, базируясь на поправках IEEE 802.1 бе, ка­сающихся мобильности, определил основные характеристики и профиль сертификации (рис. 8.1). Для наземной сети он определил архитектуру се­ти, необходимую, чтобы осуществлять мобильные соединения WiMAX «из конца в конец».

Мобильный WiMAX — это система беспроводной связи, которая позволяет конвергенцию (постепенное сближение) мобильной широко­полосной и стационарной сетей на основе технологии радиодоступа и гибкой архитектуры сети.

В системе мобильного WiMAX для радиоинтерфейса принят ортого­нальный многостанционный доступ с частотным разделением каналов (OFDMA — Orthogonal Frequency Division Multiple Access), который обес­печивает хорошие характеристики в условиях многолучевости и при отсут­ствии прямой видимости. Этот метод доступа заключается в том, что последовательный поток информации из N символов разбивается на п бло­ков по N/n символов в каждом, причем символы разных блоков передают­ся «параллельно», каждый на своей поднесущей. Преимущество данного метода состоит в том, что он позволяет снизить до минимума или полно­стью исключить межсимвольные искажения, возникающие в радиоканале. Чтобы дать возможность наращивать пропускную способность канала от 1,25 к 20 МГц, поправками ШЕЕ 802.16е был введен метод «наращиваемый OFDMA» (SOFDMA - Scalable OFDMA) [109]. Группа WiMAX-Форума, занимающаяся обеспечением мобильности, разработала системные про­фили, которые оговаривают обязательные и дополнительные характерис­тики, необходимые для построения гибкого радиоинтерфейса. Системный профиль мобильного WiMAX позволяет создавать мобильные системы на основании общей базы и общего набора характеристик, которые гаранти­руют полностью совместимые основные функциональные возможности для терминалов и базовых станций.

Некоторые из существенных характеристик мобильного WiMAX приведены ниже.

Высокая скорость передачи данных за счет применения системы ан­тенн MIMO1 (Multi Input — Multi Output) антенны в сочетании с гибкими схемами каналообразования, усовершенствованным кодированием и мо­дуляцией. Все это позволяет технологии мобильного WiMAX поддержать пиковую скорость данных по направлению «вниз» до 63 Мбит/с и в на­правлении «вверх» — до 28 Мбит/с.

Качество обслуживания (QoS) является фундаментальным условием архитектуры протоколов доступа к среде (IEEE 802.16 MAC — Media Access Control). Оно определяется применением метода DiffiServ — диф­ференцированного обслуживания. Это стандартизированный метод для поддержки служб с различными уровнями качества. При этом трафик разделяется с помощью меток на несколько групп в зависимости от QoS.

Мобильный WiMAX предусматривает применение многопротокольной коммутации с использованием меток (MPLS — Multiprotocol Label Switching). Эта технология работает с метками в пакетах данных и позволяет создавать выделенные коммутируемые потоки. Применение этих методов позволяет осуществлять IP-соединения с учетом QoS. Оптимальное исполь­зование времени, пространства и частоты обеспечивается механизмом обра­зования подгрупп каналов на заданное время (subcanalization) и сигнализа­цией по отдельным каналам связи (ОКС), применяющей специальные сиг­нальные протоколы прикладного уровня (MAP — Mobile Application Part).

Наращиваемость. Технология WiMAX разработана так, что она спо­собна наращивать каналы и работать при различных методах формирова­ния каналов от 1,25 до 20 МГц, чтобы удовлетворить различные требова­ния к использованию диапазона.

Все это позволяет достичь выгодных экономических решений в кон­кретной географической зоне, например, обеспечить доступный беспро­водной Интернет в сельской местности, предоставлять мобильную связь в пригородах с малой плотностью абонентов и т. п.

Безопасность. Применяемые средства безопасности являются лучши­ми в классе расширяемых протоколов аутентификации (ЕАР — Extensible Authentication Protocol). Эти методы основаны на применении дополни­тельных средств помимо SIM-карты (одноразовые маркеры, цифровые под­писи и пр.). Схемы шифрования основаны на усовершенствованном стан­дарте шифрования AES (Advanced Encryption Standard) и коде аутентифика­ции сообщений на основе хеширования2 (НМАС — Hash based Message Authentication Code). Эти методы поддерживают различные средства аутен­тификации: SIM- или USIM-карты, интеллектуальные карты (Smart Card), цифровые подписи, схемы «пользователь — пароль».

Мобильность. Мобильный ШМАХ поддерживает оптимальные схе­мы передачи соединения (хэндовера) со временем задержки меньше чем 50 миллисекунд, чтобы гарантировать работу приложений, таких как VoIP, в реальном масштабе времени. Они выполняются без ухудшения об­служивания. Гибкие схемы управления ключами гарантируют безопас­ность в процессе передачи соединения.

Ортогональный многостанционный доступ с частотным разделени­ем каналов (OFDMA) базируется на системе мультиплексирования OFDM.

Ортогональное частотное разделение каналов (OFDM — Orthogonal Frequency Division Multiplexing) — методика мультиплексирования, кото­рая подразделяет полосу канала на множество поднесущих частот, как показано на рис. 9.1.

В системе OFDM входной поток данных разделен на несколько парал­лельных подпотоков с уменьшенной скоростью передачи данных (с увели­чением продолжительности каждого передаваемого на этой частоте знака). Каждый подпоток модулируется и передается на отдельной ортогональной поднесущей частоте. Протокольная единица, передаваемая с помощью од­ной несущей, называется символом. Увеличенная продолжительность сим­вола улучшает устойчивость OFDM, уменьшая их максимальный разброс между символами, предаваемыми с помощью разных несущих.

Основные устройства, обеспечивающие модуляцию с несколькими несущими по принципу OFDM, показаны на рис. 9.1. Каждый подканал работает на своей несущей частоте. Если обозначить частоту первой несу­щей ω, то вторая несущая будет иметь частоту 2ω и т. д.; для n-го канала эта частота будет равна nω.

Если для каждого из n подпотоков применить квадратурную моду­ляцию, то получим n квадратурных (ортогональных) функций типа ак cos kcot + bk sin kcot. Если функции всех подканалов просуммировать, то получим функцию, аналогичную функции, которая называется ря­дом Фурье:

.

Функция, полученная в результате модуляции, отличается от ряда Фурье тем, что она конечна. Для увеличения точности обработки и ис­ключения взаимного влияния каналов реальная функция дополняется «префиксом», содержащим несколько значений ряда Фурье (псевдокана­лов). Он устанавливается перед последовательностью квадратурных сиг­налов. Это увеличивает точность получения функции x(t) и позволяет бо­лее четко отделять подканалы друг от друга.

Рис. 9.1. Модуляция с несколькими несущими

Сумма функций, полученных в результате модуляции, «свертывает­ся» с помощью обратного преобразования Фурье в одну функцию x(t), ко­торая преобразуется в цифровую форму и передается в линию.

На приемном конце происходит переход из цифровой в аналоговую форму, производится прямое преобразование Фурье, квадратурные функ­ции каждого канала демодулируются и собираются в одну последователь­ность. Для устранения межсимвольной интерфе­ренции вводится циклический префикс (СР).

Ц

Рис.9.2 Защита от межсимвольной интерференции с помощью цик­лического префикса

иклический префикс добавляется в начало каждогоOFDM-сим­вола (рис. 9.2) и представляет собой циклическое повторение оконча­ния символа. Наличие циклического префикса создает временные пау­зы между отдельными символами, и если длительность защитного ин­тервала превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольная интерференция не возникает.

Структура подканала OFDMA содержит три типа поднесущих частот, как показано на рис. 9.3:

  • поднесущие информационные частоты для передачи данных;

  • поднесущие частоты для передачи пилот-сигналов (для целей из­мерений и синхронизации);

  • нулевые поднесущие частоты, используемые для защитных ин­тервалов частот.

Активные поднесущие частоты (информационные и пилот-сигнал) сгруппированы в поднаборы поднесущих частот, называемые подканала­ми. Поднесущие частоты, формирующие один подканал, могут быть, но не должны быть, смежными. Основная нагрузка и сигналы управления передаются в подканалах.

Рис. 9.3. Распределение поднесущих частот

Пилот-сигналы распределяются в зависимости от способа распреде­ления поднесущих и направления потока.

При формировании подканалов в направлении «вниз» применяют­ся следующие способы:

  • каналообразование с полным использованием поднесущих час­тот (FUSC — Fully Used Sub canalization);

  • каналообразование с частичным использованием поднесущих ча­стот (PUSC — Partly Used Sub canalization);

• смежные перестановки АМС (Adoption Modulation and Coding).

Частичное использование поднесущих частот означает, что извсего набора несущих частот выбирается только часть. Устройства (например, подвижные станции) работают, занимая только часть по­лосы. Поскольку в этом случае вся излучаемая мощность концентри­руется в используемой полосе, это приводит к увеличению мощности на каждую поднесущую. Для передачи информации в направлении «вверх» в городских условиях это дает дополнительный запас на зами­рания.

При направлении «вверх» применяется только два способа: с пол­ным использованием поднесущих частот (UL PUSC) и дополнительные перестановки.

Подканалы в направлении «вниз» могут работать с различным при­емниками, подканалы в направлении «вверх» могут работать с различны­ми передатчиками.

Существует два типа формирования подканалов из поднесущих частот:

  • смежные;

  • с разнесением.

В первом случае для подканала выбираются поднесущие, которые находятся рядом в диапазоне частот.

Формирование подканала с разнесением выбирает номиналы под­несущих частот для каждого канала в соответствии с псевдослучайной по­следовательностью. Этим обеспечивается разнесение по частоте и усред­нение межсотовой интерференции.

    1. Технологии интеллектуальной антенны. Частичное повторное использование частоты. Групповая доставка и широковещательное обслуживание.