Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМП Теор.осн.сист.моб.связи.doc
Скачиваний:
186
Добавлен:
18.02.2016
Размер:
3.2 Mб
Скачать

Безопасность

Архитектура сети WiMAX базирует свою безопасность на учете типа оператора и топологии сети и выполняет различные сценарии. В частно­сти, она поддерживает:

а) в части безопасности; строгое соответствие процедур аутентифи­кации оборудования между мобильной станцией и сетью WiMAX базируясь на стандарте IEEE 802.16

б) все механизмы аутентификации в домашней и визитной сети, ко­торые базируются на последовательных и расширяемых процеду­рах аутентификации;

г) механизмы безопасности, которые обеспечивают сохранение це­лостности данных, защиту откликов, конфиденциальность, обна­ружение несогласованности используемых ключей;

д) использование мобильной станцией таких механизмов, как ини­циирование или закрепление за терминалами дополнительных возможностей, например, виртуальной частной сети (VPN );

е) механизм управления IP-адресами между мобильной станцией (станцией услуги) и визитной или домашней сетью поставщика услуг.

Мобильность и передача вызова (хэндовер)

Архитектура сети WiMAX поддерживает множество возможностей мобильности и хэндовера. кна предполагает реализацию:

а) передачи вызова сетям с различными технологиями — WiFi, 3GPP, DSL или MSO (Multi Service Operator) — если мобильная станция допускает работу в нескольких режимах;

б) поддержки различных версий протокола IP (IPv4 или IPv6), связанных с беспроводным доступом. В пределах такой архитек-туры должна быть встроена система, снабжающая мобильную станцию адресами IP для обеих версий протокола (IPv4 и IPv6);

в) поддержки роуминга между сетями поставщиков услуг;

г) применения механизмов плавного (без перерыва) хэндовера для быстро передвигающихся средств и широко используемых услуг, а также следующих услуг:

  • динамические и статические конфигурации домашнего адреса;

  • динамическое назначения домашнего агента (промежуточного устройства с адресом и возможностью реализации некоторых услуг, не предоставляемых центральными средствами); это на­значение обеспечивает оптимизацию маршрутизации и регу­ лирования нагрузки;

  • назначение домашнего агента по административным сообра­жениям (например, для совместных или лимитированных рас­четов).

Расширение и наращиваемость, выбор зоны покрытия и оператора

Архитектура мобильного WiMAX имеет широкие возможности для расширения и наращивания, а также гибкость в выборе оператора. В ча­стности, предполагается:

а) простое изменение параметров при проектировании сетей досту­па к услугам и основной сети, как в сторону увеличения, так и уменьшения; это касается зоны покрытия или емкости системы;

б) возможность приспосабливаться к любой топологии: индивиду­альной («сними трубку и говори»), иерархической и/или соеди­нений со многими промежуточными узлами;

в) обеспечение возможности работы с различными ретрансляцион­ными линиями, проводными и беспроводными, имеющими раз­личные временные задержки и характеристики и пропускную способность;

г) поддержка развития инфраструктуры;

д) поддержка поэтапного внедрения IP-услуг, которые должны на­ращиваться в соответствии с возрастанием числа активных поль­зователей и числа услуг, используемых каждым абонентом;

е) поддержка наращивания числа базовых станций и их ввода в сеть для различной емкости и зоны покрытия, например, пико- и макросотовых;

ж) поддержка декомпозиции и интеграции функций сети взаимо­действия с услугой доступа к сети при разработке и по заявке пользователей для создания схем баланса нагрузки и эффектив­ности использования спектра и сетевых ресурсов (CSN — Connectivity Service Network).

Способность оборудования различных производителей к взаимодействию

Другой важный аспект архитектуры сети мобильного WiMAX — под­держка взаимодействия оборудования различных изготовителей при реа­лизации функций сети доступа. Такое взаимодействие должно включать:

а) транзит через BS к оборудованию, выполняющему функции до­ступа к сети;

б) применение различных элементов реализации функций сети до­ступа (возможно, различных изготовителей) и базовой сети, с ми­нимальным ухудшением или без него в части выполняемых функ­ций и по пропускной способности. Стандарт IEEE 802.16 опре­деляет несколько подуровней конвергенции. Архитектура сети мобильного WiMAX поддерживает различные типы подуровней конвергенции: Ethernet CS, IPv4 CS и IPv6 CS.

Качество обслуживания

Сеть мобильного WiMAX имеет средства для поддержки различных механизмов обеспечения качества обслуживания. В частности, она пре­доставляет возможность гибкой поддержки одновременной работы раз­личных наборов IР-услуг.

Архитектура поддерживает:

а) дифференцированные уровни качества обслуживания — грубой настройкой (для пользователя) и тонкой настройкой (поток услуг пользователя);

б) управление доступом;

в) управление полосой пропускания;

г) политику операторов, основанную на их соглашении по гаранти­рованному обслуживанию (SLA — Service Level Argument). Это включает политику по отношению к отдельным пользователям, группам пользователей, учет таких факторов, как местоположе­ние, время дня и т. п.

Контрольные вопросы

1.Основные технические характеристики и свойства стандарта WiMAX?

2.Основны принципы архитектуры мобильной сети WiMAX?

3.В чем заключается технология интелектуальных антенн?

4.В чем заключается принцип модуляции OFDMA?

5.Системы стандартов широкополосного доступа ?

  1. Транкинговые системы радиосвязи.

10.1Архитектура транкинговых сетей. Классификация транкинговых сетей. Транкинговая система SmarTrunk.

Транкинговые системы связи (ТСС) классифицируют по следующим признакам.

1)По методу передачи речевой информации: аналоговые и цифровые. Передача речи в радиоканале аналоговых систем осуществляется с использованием частотной модуляции, шаг сетки частот обычно составляет 12,5 кГц или 25 кГц. Для передачи речи в цифровых системах используются различные типы вокодеров, преобразующих аналоговый речевой сигнал в цифровой поток со скоростью не более 4,8 кбит/с.

2)В зависимости от количества БС и общей архитектуры: однозоновые или многозоновые системы. В системах первого типа имеется одна БС, в системах второго типа - несколько БС с возможностью роуминга.

3)По методу объединения БС в многозоновых системах. БС могут объединяться с по­ мощью единого коммутатора (системы с централизованной коммутацией), или соединяться друг с другом непосредственно, или через СОП (системы с распределенной коммутацией).

4)По типу многостанционного доступа: FDMA, FDMA+TDMA. В большинстве ТСС используется многостанционный доступ с частотным разделением (FDMA), включая цифро­ вые системы. Комбинация FDMA и многостанционного доступа с временным разделением (TDMA) используется в системах стандарта TETRA, а также является дополнительной воз­ можностью системы EDACS ProtoCALL.

5)По способу поиска и назначения канала: системы с децентрализованным (СДУ) и централизованным (СЦУ) управлением. В СДУ процедуру поиска свободного канала выпол­ няют абонентские радиостанции (АР). В этих системах ретрансляторы (РТ) БС обычно не связаны друг с другом и работают независимо. Особенностью СДУ является относительно большое время установления соединения между абонентами, растущее с увеличением числа РТ. Такая зависимость вызвана тем, что АР вынуждены непрерывно последовательно скани­ ровать каналы в поисках вызывного сигнала (последний может поступить от любого РТ) или свободного канала (если абонент сам посылает вызов). Представителями данного класса яв­ ляются системы стандарта SmarTrunk.

В СЦУ поиск и назначение свободного канала производится на БС. Для обеспечения нормального функционирования таких систем организуются каналы двух типов: рабочие (трафика) и управления. Все запросы на предоставление связи направляются по каналу управления, по этому же каналу БС извещает абонентские устройства о назначении канала, отклонении запроса, или о постановке запроса в очередь.

6) По типу канала управления (КУ). Во всех ТСС каналы управления являются цифро- выми. Различают системы с выделенным частотным КУ и системы с распределенным КУ. В

системах первого типа ПД в КУ производится со скоростью до 9,6 кбит/с, а для разрешения конфликтов используются протоколы типа ALOHA. Микропроцессорный блок управления (центральный системный контроллер) контролирует все BG в зоне обслуживания. Один из каналов выделяется для использования в целях управления. Его основная функция - установ­ление соединения между двумя абонентами сети. Все мобильные и базовые станции, не про­изводящие в данный момент приема или передачи речевой информации, сканируют выделен­ный канал. Выделенный КУ имеют ТСС фирмы Motorola (StartSite, SmartNet, SmartZone), сис­тема EDACS фирмы Ericsson и некоторые другие.

В системах с распределенным КУ информация о состоянии системы и поступающих вызовах распределена между низкоскоростными субканалами ПД, совмещенными со всеми рабочими каналами. Таким образом, в каждом частотном канале системы передается не только речь, но и данные КУ. Для организации парциального канала в аналоговых системах обычно используется субтональный диапазон частот 0-300 Гц. Представителями данного класса являются системы LTR и Multi-Net фирмы E.F.Johnson.

7) По способу удержания канала. ТСС позволяют абонентам удерживать канал связи на протяжении всего разговора или только на время передачи. Первый способ, называемый также транкингом сообщений, наиболее традиционен для систем связи и обязательно ис­пользуется во всех случаях применения дуплексной связи или соединения с ТфОП.

Второй способ может быть реализован только при использовании полудуплексных ра­диостанций (PC), в которых передатчик включается только на время произнесения абонен­том фраз разговора. В паузах между окончанием фраз одного абонента и началом ответных фраз другого передатчики PC выключены. Значительная часть ТСС эффективно использует такие паузы, освобождая канал немедленно после окончания работы передатчика АР. Репли­ки одного и того же разговора могут передаваться по разным каналам. Такой метод обслужи­вания, предусматривающий удержание канала только на время передачи, называется тран­кингом передачи. Платой за высокую эффективность данного метода служит снижение ком­фортности переговоров — в состоянии высокой нагрузки канал предоставляется с некоторой задержкой, что приводит к фрагментарности и раздробленности разговора.

Архитектура и принципы построения транкинговых сетей

На рис. 3.1 представлена обобщенная структурная схема однозоновой ТСС. В состав БС, кроме радиочастотного оборудования (ретрансляторы, устройство объединения радио­сигналов, антенны) входят также коммутатор, устройство управления (УУ) и интерфейсы к различным внешним сетям.

Р

Рис.10.1 Структурная схема однозоновой транкинговой системы

етранслятор (РТ) – набор приемопередающего оборудования,обслуживаю-щего одну пару несущих частот. До последнего времени в подавляющем большинстве ТСС одна пара несущих означала один канал трафика (КТ). В настоящее время, с появлением систем стан­дарта TETRA и системы EDACS ProtoCALL, предусматривающих временное уплотнение, один РТ может обеспечить два или четыре КТ.

Антенны БС, как правило, имеют круговую диаграмму направленности. При располо­жении БС на краю зоны применяются направленные антенны. БС может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте может размещается несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Устройство объединения радиосигналов позволяет использовать одно и то же антен­ное

оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах. РТ работают только в дуплексном режиме, разнос частот приема и пере­дачи составляет от 45 МГц до 3 МГц.

Коммутатор в однозоновой ТСС обслуживает весь ее трафик, включая соединение МА с ТфОП и все вызовы, связанные с ПД.

Устройство управления обеспечивает взаимодействие всех узлов БС. Оно также обра­батывает вызовы, осуществляет аутентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в БД повременной оплаты. В некоторых системах УУ регулирует максимально допустимую продолжительность соединения с ТС. Как правило, используются два варианта регулировки: уменьшение продолжительности соединения в заранее заданные часы наибольшей нагрузки, или адаптивное изменение в зависимости от текущей нагрузки.

Интерфейс к ТфОП реализуется в ТСС различными способами. В недорогих системах (например, SmarTrank) подключение производится по двухпроводной коммутируемой линии. Более современные ТСС имеют в составе интерфейса к ТфОП аппаратуру прямого набора

номера DID (Direct Inward Dialing), обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС. Ряд систем использует цифровое ИКМ-соединение с аппаратурой АТС.

Одной из основных проблем при регистрации и использовании транкинговых систем в России является проблема их сопряжения с ТфОП. При исходящих вызовах транкинговых абонентов в телефонную сеть сложность заключается в том, что некоторые транкинговые системы не могут набирать номер в декадном режиме по абонентским линиям в электроме­ханических АТС. Таким образом, необходимо использовать дополнительное устройство пре­образования тонального набора в декадный.

Необязательными, но характерными элементами ТСС являются диспетчерские пульты (ДП). ТСС используются в первую очередь потребителями, работа которых требует наличия диспетчера - службы охраны, скорая медицинская помощь, пожарная охрана, транспортные компании, муниципальные службы. ДП могут включаться в систему по абонентским радио­каналам, или подключаться по выделенным линиям непосредственно к коммутатору БС. В рамках одной ТСС может быть организовано несколько независимых сетей связи. Пользова­тели каждой из таких сетей не будут замечать работу соседей и не смогут вмешиваться в ра­боту других сетей. Поэтому в одной ТСС могут работать несколько ДП, различным образом подключенных к ней.

Абонентское оборудование ТСС включает в себя широкий набор устройств. Как прави­ло, наиболее многочисленными являются полудуплексные PC, так как они в наибольшей сте­пени подходят для работы в замкнутых группах. В основном это функционально ограниченные устройства, не имеющие цифровой клавиатуры. Их пользователи имеют возможность связы­ваться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Как правило, этого вполне достаточно для большинства потребителей услуг связи

ТСС предоставляют абонентам возможность производить внутри системы индивиду­альный (персональный) и групповой (диспетчерский) вызовы (ГВ). В первом случае вызов направляется только одному абоненту, во втором - нескольким абонентам одновременно.

Основным типом вызова в ТСС является ГВ в рамках одной группы. ГВ мо­жет быть произведен только в полудуплексном режиме - пока вызывающий абонент говорит и его радиостанция находится в режиме передачи, все остальные члены группы принимают речь вызывающего абонента. Данный тип вызова обеспечивают все известные ТСС.

Системы SmarTrunk, а впоследствии SmarTrunk II и SmarTrunk-R, были разработаны как альтернатива более сложным транкинговым системам МРТ 1327, Smartnet или LTR. Ос­новное применение системы SmarTrunk нашли в странах Юго-Восточной Азии, в Китае, а в последние годы и в России.

Технология SmarTrunk обычно применяется для создания относительно дешевых ТСС в диапазонах частот 146-174 МГц и 403-470 МГц, хотя известны и примеры создания систем SmarTrunk в диапазоне 33—48 МГц. В настоящее время фирма SmarTrunk Systems прилагает усилия для внедрения протокола SmarTrunk в диапазоне частот 330 МГц (300-344 МГц), а также в диапазоне 800 МГц.

Количество радиоканалов SmarTrunk определяется, исходя из количества абонентов в системе и планируемого трафика. В составе одной системы может быть использовано от двух до 16 дуплексных радиоканалов, что может обеспечить одновременное обслуживание от 50 до 1000 абонентов.

Максимальное количество абонентов в сетях SmarTrunk ранее определялось объемом БД контроллеров ST-850 или ST-852 и ограничивалось числом 1100. В современных кон­троллерах ST-853 объем БД расширен до 4096 записей, что позволяет регистрировать або­нентов не только основной зоны обслуживания, но и заранее предусмотреть регистрацию абонентов SmarTrunk, временно прибывающих из других населенных пунктов.

Цифровой протокол сигнализации, примененный в системах SmarTrunk II, обеспечи­вает большую дальность связи, повышенную защиту от НСД и конфиденциальность перего­воров. Предусматривается дистанционное отключение АР с ДП в случае их хищения, а также для предотвращения доступа в систему нелегальных пользователей. Для дополнительной защиты от помех и НСД может использоваться система шумоподавления с непрерывными тонально-кодированными сигналами CTCSS.

Система SmarTrunk позволяет организовать: радиосвязь между подвижными абонен­тами в индивидуальном или групповом режиме (без выхода в ТС); связь между МА и або­нентами АТС или УАТС.

В SmarTrunk могут быть организованы несколько типов вызовов: индивидуальный, групповой, общесистемный, а также экстренный. Современные системы SmarTrunk II обес­печивают до 100 уровней приоритета абонентов, причем высокоприоритетным абонентам рабочие каналы предоставляются по их первому требованию. Системы SmarTrunk преду­сматривают возможность учета продолжительности сеансов связи и формирование счетов за использованное эфирное время.

Транкинговые сети SmarTrunk состоят из БС и АР. В состав каждой БС входят ТК, ретрансляторы, фильтрующее оборудование (дуплексные фильтры, комбайнеры и т.п.) и ан-тенно-фидерные устройства. ТК реализуют все основные алгоритмы работы, а также выпол­няют функции интерфейса телефонного канала.

В качестве абонентских устройств в SmarTrunk используются обычные полудуплекс­ные или дуплексные ЧМ радиостанции различных производителей, оснащенные дополни­тельными логическими модулями.

Рис.10.2. Базовая станция SmarTrunk II

Особенностью систем SmarTrunk является возможность их постепенного модульного наращивания. БС может вначале быть двух- или трехканальной и постепенно наращиваться до 16 каналов. Структурная схема базового оборудования 4 -

канальной системы SmarTrunk II с контроллерами ST-853 приведена на рис. 10.2. В данном случае применена классическая схема с использованием одной передающей и одной приемной антенны и, соответственно, устройства сложения радиосигналов передатчиков (комбайнера) и устройства разделения радиосигналов для приемников (распределительной панели).

Центральным элементом системы SmarTrunk является ТК, подключенный к ретранс­лятору рабочего канала. Он отвечает за загрузку своего канала, вырабатывает все управляю­щие сигналы. В системах SmarTrunk II контроллеры ST-853 связаны общей шиной (ОШ) данных, работающей в РМВ. Наличие ОШ данных позволяет исключить потери вызовов, которые имели место в прежних версиях систем, предотвращает дробление групп связи при групповых вызовах.

Управляющий компьютер подключается к одному из контроллеров БС по стыку RS232. Связь с остальными контроллерами той же БС осуществляется без дополнительных переключений по ОШ данных. Компьютер может подключаться к ST-853 как непосредствен­но, так и дистанционно, через высокоскоростной внешний модем. Дистанционное управле­ние контроллерами БС обычно осуществляется через ТС с использованием второго анало­гичного внешнего модема, подключенного к управляющему компьютеру.

Каждый ТК SmarTrunk содержит две БД - об абонентах ТСС и о сеансах связи, имев­ших место на соответствующем рабочем канале. В БД абонентов содержатся добавочные но­мера и пейджинговые коды тех, кто может пользоваться данным радиоканалом, и основные ограничения для каждого абонента. Объем этой БД в контроллере ST-853 доведен до 4096 абонентов и 320 тысяч различных пейджинговых кодов. Это сделано в целях обеспечения «административного роуминга», дающего возможность абонентам SmarTrunk пользоваться услугами нескольких различных систем, расположенных в разных населенных пунктах.

База данных о сеансах связи через ретранслятор, к которому подключен данный кон­троллер, содержит добавочные номера и коды обращавшихся абонентов, отметки о характере связи, дату, время и продолжительность сеанса связи.

Каждый контроллер допускает подключение к нему до двух абонентских телефонных линий. Обычно один из выходов контроллера подключается к городской АТС, а второй - к местной АТС, или к спутниковой линии связи и т.д.

Связь между MA в системе SmarTrunk организуется следующим образом. После включения питания каждая АР начинает последовательное сканирование всех РК в поисках вызывного сигнала. При обнаружении своего вызывного кода она прекращает сканирование и подает звуковой сигнал, оповещая владельца о поступлении вызова. После этого начинает­ся разговор между абонентами.

При необходимости вызвать какого-либо из абонентов сети по РК или выйти в ГТС нужно набрать на клавиатуре номер радиоабонента или телефонный номер, а также мар­шрутный код вызова (два символа, показывающие вид вызова). Вся эта информация затем выдается в эфир одним пакетом. В диспетчерском режиме для связи со своей группой доста­точно нажать на тангенту. АР последовательно сканирует доступные РК и, найдя свободную частоту, обеспечивает связь с ретранслятором БС. Сразу же после этого производится набор городского телефонного номера или передается в эфир добавочный номер МА. После ответа абонента можно вести разговор.

Чтобы установить связь с МА с телефона ГТС, необходимо набрать телефонный номер одного из РТ системы и после звукового сигнала соединения набрать добавочный номер нужного абонента (желательно в тональном режиме). После ответа можно вести обычный телефонный разговор.

Существуют и другие аналоговые ТСС, например фирмы Motorola: системы StartSite, SmartNet, Smartzone.

10.2 Цифровые транкинговые системы. Особенности стандарта TETRA. Тенденции развития транкинговых систем радиосвязи.

Одним из первых стандартов цифровой транкинговой радиосвязи был стандарт EDACS (Enhanced Digital Access Communication System), разработанный фирмой Ericsson (Швеция). Первоначально он предусматривал только аналоговую передачу речи, однако позднее была разработана цифровая модификация.

В 1996 г. фирмой Ericsson была выпущена цифровая транкинговая система EDACS ProtoCALL. В отличие от EDACS, в EDACS ProtoCALL может использоваться TDMA. На одной несущей частоте передаются один, два или четыре разговорных канала. Шаг сетки частот сохранен тем же, что и в EDACS - 25 кГц. Таким образом, эффективная полоса частот на канал может составлять 25 кГц (как и в EDACS), 12,5 кГц или 6,25 кГц. Радиочастотное оборудование системы EDACS ProtoCALL ориентировано на диапазоны 800 МГц и 900 МГц.

В системе EDACS ProtoCALL, также как и в EDACS, возможна передача речи в анало­говом и в цифровом виде. Несмотря на это, не предусматривается выделение частотных ка­налов цифровой речи или каналов ПД.

Система EDACS ProtoCALL является многозоновой и предназначается для работы в однозоновой конфигурации и создания сетей масштаба государства.

Стандарт АРСО 25 разработан Ассоциацией официальных представителей служб свя­зи органов общественной безопасности АРСО, которая объединяет пользователей систем связи, работающих в службах общественной безопасности. АРСО является международной организацией и объединяет представителей правоохранительных органов около 70 стран.

Наиболее важными принципами, положенными в основу стандарта АРСО 25, являют­ся открытая архитектура и наличие средств взаимодействия между различными подразделе­ниями. Использование открытой архитектуры должно обеспечить совместимость аппарату­ры. Необходимость совместной работы нескольких подразделений наиболее характерна для служб обеспечения безопасности, которым часто нужно согласовывать свои действия [50].

Стандарт АРСО 25 предусматривает два этапа перехода к цифровой передаче речи. На первом используется сетка частот с шагом 12,5 кГц, на втором - шаг уменьшается до 6,25 кГц. В обоих случаях разделение каналов осуществляется только методом FDMA, а скорость ПД в радиоканале составляет 9600 бит/с.

Система стандарта TETRA (трансевропейская система транкинговой связи) представ­ляет собой совокупность спецификаций, разработанных ETSI и определяющих цифровую ТСС. Стандарт TETRA базируется на технической идеологии GSM.

Стандарт TETRA включает в себя две спецификации: TETRA Voice + Data (TETRA V+D) и TETRA Packet Data Optimized (TETRA PDO). TETRA V+D - это стандарт на интегри­рованную систему передачи речи и данных, TETRA PDO - стандарт, описывающий специ­альный вариант ТСС, ориентированный только на ПД .

Радиоинтерфейс стандарта TETRA предполагает работу в стандартной сетке частот с шагом 25 кГц. Для систем стандарта TETRA могут использоваться диапазоны от 150 МГц до 900 МГц, однако реально в странах Европы будут выделены частоты в диапазонах частот 410-430 МГц, 870-876/915-921 МГц, или в диапазонах частот 450-470 МГц, 385-390/395-399,9 МГц. Дуплексный разнос для систем стандарта TETRA должен составлять 10 МГц.

В радиоканале используется относительная фазовая модуляция типа 7I/4-DQPSK с по­стоянной огибающей. Таким образом, каждому символу модуляции соответствует передача двух бит информации. Для преобразования речи в стандарте TETRA V+D используется кодек с алгоритмом CELP. Скорость цифрового речевого потока на выходе кодека составляет 4,8 кбит/с. До поступления на вход модулятора, к речевому потоку добавляется корректирую­щий код, после чего производится межблочное перемежение.

Полная пропускная способность одного канала в системе стандарта TETRA V+D со­ставляет 7200 бит/с. Стандарт TETRA PDO обеспечивает ПД со скоростью 28,8 кбит/с. ПД может производиться по схемам «точка-точка» и «точка-многоточие». Кроме того, стандарт TETRA предусматривает поддержку протокола Х.25 для пользовательских приложений. На-

личие в стандарте спецификаций на шлюз с ISDN и PDN обеспечивает возможность взаимо­действия с внешними СПД.

Спецификация стандарта TETRA не накладывает ограничений на архитектуру сети связи. Благодаря модульному принципу построения могут быть реализованы разнообразные конфигурации сетей с различной географической протяженностью.

Сети стандарта TETRA предполагают распределенную инфраструктуру управления и коммутации, обеспечивающую быструю передачу вызовов и сохранение локальной работо­способности системы при отказе ее отдельных элементов. Основными элементами сетей TETRA являются базовые и мобильные станции, устройства управления БС, контроллеры БС, ДП, терминалы ТОЭ.

Функции сетевого обслуживания и межсистемного взаимодействия определяются сле­дующими специфицированными интерфейсами:

  • Air Interface - радиоинтерфейс между БС и АР;

  • Direct Mode Operation - интерфейс прямого соединения между двумя АР;

  • Terminal Equipment Interface - интерфейс между АР и терминалом ПД;

  • Inter System Interface - межсистемный интерфейс для объединения нескольких систем (возможно, разных фирм-изготовителей) в единую сеть;

  • Line-connected Station Interface - интерфейс для подключения ДП к базовому оборудованию;

  • Network Management Centre Interface - интерфейс для подключения ТОЭ;

  • Gateways to PABX, PSTN, ISDN, PDN - интерфейс для подключения к УАТС, ТфОП, ЦСИС, СКП.

В стандарте TETRA предусматривается не только прямая связь между АР, но и ис­пользование АР в качестве РТ для расширения зоны обслуживания.

Система стандарта TETRA может функционировать в следующих режимах: транкин-говой связи; с открытым каналом; непосредственной связи.

В режиме транкинговой связи обслуживаемая территория перекрывается зонами дей­ствия БС. Стандарт TETRA позволяет строить как системы с выделенным частотным КУ, так и с распределенным. При работе сети связи с выделенным КУ приемопередающие станции предоставляют абонентам несколько частотных каналов, один из которых (КУ) специально предназначается для обмена служебной информацией. При работе сети с распределенным КУ служебная информация передается либо в специально выделенном временном канале (одном из 4-х каналов, организуемых на одной частоте), либо в контрольном кадре мульти-кадра (одном из 18).

Каналы передачи сообщений могут выделяться в соответствии со следующими способами.

  1. Транкинг сообщений. Канал присваивается в начале сеанса связи и освобождается по его окончанию.

  2. Транкинг передач. Канал присваивается только на время одной транзакции (периода передача/прием), после чего он освобождается. Для следующей транзакции может быть вы­ делен новый канал.

  3. Квазитранкинг передач. Канал так же, как и в транкинге передач освобождается по­ сле транзакции, однако с некоторой задержкой, что позволяет снизить количество сигналов управления.

В режиме с открытым каналом группа пользователей имеет возможность устанавли­вать соединение «точка - многоточие» без установочной процедуры. Любой абонент, при­соединившись к группе, может в любой момент использовать этот канал. В этом режиме PC работают в двухчастотном симплексе.

В режиме непосредственной (прямой) связи между терминалами устанавливаются двух- и многоточечные соединения по радиоканалам, не связанным с КУ сетью, без передачи сигналов через БС.

В системах стандарта TETRA мобильные станции могут работать в режиме «двойного наблюдения» (Dual Watch), при котором обеспечивается прием сообщений от абонентов, ра­ботающих как в режиме транкинговой, так и прямой связи.

В системах стандарта TETRA поддерживаются передача речи и данных.

При этом речь и данные могут передаваться одновременно с одного терминала по раз­личным логическим каналам.

Для передачи речи используются службы речевой связи, обеспечивающие следующие режимы:

  • речевая связь с индивидуальным вызовом абонентов (коммутируемое двухточечное со­единение между двумя МА или между МА и стационарным терминалом для обеспече­ния прямой двухсторонней связи в режиме дуплекса или двухчастотного симплекса):

  • многосторонняя речевая связь, предполагающая групповой вызов абонентов (коммути­руемые многопунктовые двунаправленные соединения между вызывающей стороной и несколькими вызываемыми абонентами при использовании симплексного режима связи);

  • циркулярная связь с широковещательным вызовом (односторонняя передача речевой информации от вызывающей стороны нескольким вызываемым абонентам).

Все режимы речевой связи предусматривают возможность передачи как открытой ре­чевой информации, так и речи, защищенной с помощью определенных алгоритмов шифрова­ния. В стандарте описываются следующие виды ПД:

  • ПД с коммутацией цепей. Данный вид имеет режимы передачи, аналогичные речевому обмену (двухточечное и многоточечное соединение, широковещательная передача). Скорость обмена определяется числом временных интервалов, выделенных для связи, и классом защиты от ошибок;

  • коммутируемые пакеты данных. Транслируются по виртуальным цепям или в виде дейтаграмм. В первом случае возможны только двухточечные соединения, во втором - многоточечные соединения и широковещательная передача;

  • короткие сообщения (до 2048 бит). Передаются оперативно независимо от передачи речи и данных.

TETRA предоставляет пользователям ряд дополнительных услуг:

  • вызов, санкционированный диспетчером (режим, при котором вызовы поступают только с санкции диспетчера);

  • приоритетный доступ (в случае перегруженности сети доступные ресурсы присваи­ваются в соответствии со схемой приоритетов);

  • приоритетный вызов (присвоение вызовов в соответствии со схемой приоритетов);

  • избирательное прослушивание (перехват поступающего вызова без влияния на работу других абонентов);

  • дистанционное прослушивание (дистанционное включение АР на передачу для про­слушивания обстановки у абонента);

  • динамическая перегруппировка (динамическое создание, модификация и удаление групп пользователей);

идентификация вызывающей стороны (возможность получения информации о персо­ нальном идентификаторе вызывающего абонента) и др.

Стандарт TETRA обеспечивает два уровня безопасности передаваемой информации: стандартный, использующий шифрование радиоинтерфейса (обеспечивается уровень защи­ты информации, аналогичный системе сотовой связи GSM); высокий, использующий сквоз­ное шифрование (от источника до получателя).

Средства защиты радиоинтерфейса стандарта TETRA включают механизмы аутенти­фикации абонента и инфраструктуры, обеспечения конфиденциальности трафика за счет по­тока псевдоимен и специфицированного шифрования информации. Определенная дополни­тельная защита информации обеспечивается возможностью переключения информационных каналов и КУ в процессе ведения сеанса связи.

Архитектура сети стандарта TETRA

Функциональные схемы построения различных ТСС стандарта TETRA представляют­ся как совокупность элементов сети, соединенных определенными специфицированными интерфейсами. Сети стандарта TETRA содержат следующие основные элементы.

  • базовая приемопередающая станция (BTS) - обеспечивает связь в определенной зоне (ячейке). БС выполняет основные функции, связанные с передачей радиосигналов: со­пряжение с МС, шифрование линий связи, пространственно-разнесенный прием, управление выходной мощностью мобильных PC, управление радиоканалами;

  • устройство управления БС (BCF) - элемент сети с возможностями коммутации, кото­рый управляет несколькими БС и обеспечивает доступ к внешним сетям ISDN, PSTN, PDN, РАВХ, а также используется для подключения ДП и терминалов ТОЭ;

  • контроллер БС (BSC) - элемент сети с большими по сравнению с устройством BCF коммутационными возможностями, позволяющий обмениваться данными между не­сколькими BCF. Так же, как и BCF обеспечивает доступ к внешним сетям. BSC имеет гибкую модульную структуру, позволяющую использовать большое число интерфей­сов разного типа. В сетях TETRA контроллеры БС могут выполнять функции сопря­жения с другими сетями TETRA и управления централизованными БД;

  • ДП — устройство, подключаемое к контроллеру БС по проводной линии и обеспечи­вающее обмен информацией между оператором (диспетчером сети) и другими пользо­вателями сети;

  • мобильная станция (MS);

  • стационарная радиостанция (FRS - Fixed Radio Station) - PC, используемая абонен­том в определенном месте.

  • терминал ТОЭ - терминал, подключаемый к УУ базовой станцией BCF и предназна­ченный для контроля за состоянием системы, проведения диагностики неисправно­стей, учета тарификационной информации и т.п. С помощью таких терминалов реали­зуется функция управления ЛС (LNM - Local Network Management).

Благодаря модульному принципу разработки оборудования, ТСС стандарта TETRA могут быть реализованы с разными иерархическими уровнями и различной географической протяженностью (от локальных до национальных). Функции управления БД и коммутации распределяются по всей сети, что обеспечивает быструю передачу вызовов и сохранение ог­раниченной работоспособности сети даже при потере связи с ее отдельными элементами.

На национальном или региональном уровне структура сети может быть реализована на основе сравнительно небольших подсетей TETRA, соединенных друг с другом с помощью межсистемного интерфейса ISI для создания обшей сети. Под подсетью обычно понимают автономную и самосогласующуюся сеть. При этом возможно централизованное управление сетью. Вариант построения такой сети показан на рис. 10.3.

Рис.10.3. Структура сети национального или регионального уровня

Каждая подсеть TETRA выполняет свои функции управления и коммутации, а также предоставляет возможность для централизованного управления сетью более высокого уров­ня. Структура подсети зависит от трафика, а также от требований к эффективности установ­ления связи.

В случае, если не требуется резервирование каналов, возможно и достаточно создание подсети по конфигурации звезды.

При использовании линейных трактов (например, конвейеров) подсеть TETRA может быть реализована в виде длинной линии (цепи). В этом случае каждый модуль УУ базовой станции BCF (Base Station Control Function) наряду с требуемой дальностью связи обеспечи­вает локальный доступ к внешним сетям.

Простейшая конфигурация подсети TETRA включает только один модуль BCF.

В ТСС стандарта TETRA предусматриваются различные способы обеспечения отказо­устойчивости, позволяющие в случае отказа отдельных элементов сети сохранять полную или частичную работоспособность, возможно, с ухудшением ряда параметров, таких как время установления соединения и т.д. Для сетей национального уровня, как правило, исполь­зуется несколько альтернативных маршрутов соединения сетей регионального уровня, путем соединения контроллеров БС. Кроме этого, для региональных сетей предусматривается вза­имное копирование БД в контроллерах БС.

Режимы передачи речевой информации. В системах стандарта TETRA информаци­онный обмен обеспечивается с помощью телесервисных служб. Поддерживаются передача речи и данных. При этом речь и данные могут передаваться одновременно с одного термина­ла по различным логическим каналам.

Службы речевой связи обеспечивают следующие режимы: речевая связь с индивиду­альным вызовом (ИВ) абонентов; многосторонняя речевая связь, предполагающая групповой вызов (ГВ) абонентов; широковещательная передача речи.

Все режимы речевой связи предусматривают возможность передачи как открытой рече­вой информации, так и речи, защищенной с помощью определенных алгоритмов шифрования.

Индивидуальный вызов предполагает установление коммутируемого двухточечного соединения между двумя МА или между МА и стационарным терминалом для обеспечения прямой двухсторонней связи. ИВ и последующий обмен речевой информацией может произ­водиться либо в дуплексном режиме, либо в режиме двухчастотного симплекса. ИВ может быть инициирован любым пользователем TETRA и направлен любому абоненту, зарегистри­рованному в данной системе с определенным адресом, включая абонентов ТфОП, внешних УАТС и т.п. Соединение, установленное с помощью ИВ, может быть прервано как вызы­вающим, так и вызываемым абонентом.

Групповой вызов предполагает установление коммутируемого многоточечного двуна­правленного соединения между вызывающей стороной и несколькими вызываемыми абонен­тами. Обмен речевой информацией после ГВ производится только в режиме двухчастотного симплекса. При этом обмен сообщениями между членами группы осуществляется в режиме «каждый слышит каждого». ГВ может быть инициирован либо МА, либо диспетчером сети с помощью линейного терминала (ЛТ). Инициатор (контролер) группового соединения (ГС) отвечает за все аспекты соединения (начисление оплаты, возможности использования вспо­могательных служб и т.д.). В определенных ситуациях вызывающий абонент может переда­вать свои полномочия по установлению ГС другому члену группы с помощью вспомогатель­ной службы «передачи управления».

Для установления ГС используется групповой номер, который присваивается каждому из членов группы. Групповой номер МА может быть присвоен оператором сети статически

при конфигурации системы; динамически по радиоинтерфейсу при модификации групп або­нентов.

Широковещательный вызов (ШВ) предназначен для организации односторонней пе­редачи речевой информации от вызывающей стороны нескольким вызываемым абонентам. ШВ и последующая передача речевой информации производится в симплексном режиме. Он может быть инициирован либо МА, либо диспетчером сети с помощью ЛТ.

Вызываемые абоненты называются широковещательной группой. Такая группа может включать как МА, так и ЛТ. Члены группы имеют один общий широковещательный номер, который может совпадать с групповым номером. Если МА зарегистрированы в зонах дейст­вия нескольких БС, вызов может быть послан на все базовые станции. При этом диспетчер сети может выбрать режим стандартного ШВ или ШВ с подтверждением. Широковещатель­ное соединение может быть прервано только инициатором вызова.

В системах стандарта TETRA V+D используется метод TDMA. На одной несущей час­тоте организуется четыре разговорных канала. Каждый кадр имеет длительность 56,67 мс и содержит четыре временных интервала. Последовательность из 18 кадров образует мульти-кадр длительностью 1,02 с. Один TDMA кадр в мультикадре является контрольным; 60 муль-тикадров образуют гиперкадр.

Каждый временной интервал в составе кадра содержит 510 бит, 432 из которых явля­ются информационными (два блока по 216 бит). В начале временного интервала передается пакет РА (управление излучаемой мощностью, 36 бит), за ним следует первый ИБ (216 бит), далее - синхропоследовательность SYNC (36 бит) и второй ИБ. Соседние временные интер­валы разделяются защитными интервалами (GP) длительностью 0,167 мс, что соответствует 6 битам.

Изначальные (на том этапе принципиальные) отличия транкинга от сотовой связи заключались в том, что сотовые системы в основе своей предназначены для предоставления услуг равноподчиненным, независимым абонентам с ориентацией на информационное взаимодействие по горизонтали при минимуме регламентации и ограничений на услуги связи. Транкинговая связь возникла на другой основе - она предназначена для предоставления коммуникационных услуг деятельностным группам пользователей с выраженной иерархией подчиненности, т. е. с информационным взаимодействие по вертикали подчиненности.

Анализ современных военных телекоммуникационных систем Италии и Франции подтверждает, что в небольших по размаху, не претендующих на широкое использование сетях доступ подвижных абонентов целесообразно обеспечивать на основе транкинговых технологий. В то же время в сети MSE (США), принятой НАТО в качестве основной при обеспечении подвижной связи, акцент смещается в сторону сотовых технологий.

TETRA - цифровой стандарт, и по ряду параметров для потребителя он очень близок популярному GSM. Операторам проще и экономически целесообразнее использовать существующий имидж GSM. Скорее всего, по этой причине радиостанции стали больше похожи на сотовые телефоны и по размерам, и по дизайну. Отсюда и совмещение функций сотового телефона и транкинговой радиостанции в одном мобильном устройстве.

Контрольные вопросы

1. Перечислите основные стандарты аналоговых транкинговых систем связи?

  1. Перечислите основные стандарты цифровых транкинговых систем связи?

  2. Основные отличия транкинговых и сотовых систем связи?

  3. Основные характеристики транкинговой системы SmarTrunk?

  4. Основные характеристики транкинговой системы TETRA?

  5. В чем достоинства транкинговых систем связи?

  6. Каковы недостатки транкинговых систем связи?

  7. Основные перспективы развития транкинговых систем связи?

  1. Системы мобильной связи третьего и четвертого поколения. Стандарты беспроводного абонентского доступа.

11.1Стандарты третьего поколения. Пути эволюции систем третьего поколения. IMT-2000. Сервисные требования. Требования к спектру. Совместимость. Типы систем третьего поколения.

Многие из будущих приложений мобильных систем третьего поко­ления (3G) обнаруживаются по мере разработки стандартов этого поколе­ния. В первую очередь разрабатываются и внедряются такие услуги, как доступ к беспроводным услугам Интернет, постоянный доступ к Се­ти, диалоговому видео и речи для сопровождения компьютерных услуг.

Термин 3G стал довольно неопределенным. Ранее положения о сис­темах третьего поколения были определены достаточно точно в рамках стандартов. Они ставили цель обеспечить пользователям мобильной свя­зи характеристики услуг не хуже, а может быть и лучше, чем в системе ISDN при скорости обмена 144 Кбит/с.

Некоторые первоначальные стандарты, переходные от поколения 2G к 3G, такие как стандарт «общая служба пакетной радиопередачи» (GPRS — General Packet Radio Service) и IS-95, могли обеспечивать характеристики, близкие к намеченным в 3G при некоторых оптимальных условиях. Напри­мер, служба пакетной передачи составляет не более 115 Кбит/с. Системы третьего поколения вначале не были предназначены для широкого исполь­зования из-за дорогих терминалов и оборудования базовых станций.

Технологически увеличение скоростей реализуется несколькими способами: расширением используемого спектра и новыми методами мо­дуляции, применяющими сжатие данных при заданном частотном диапа­зоне. Например, новые методы модуляции заменяют традиционную двоичную систему системой с большим значением одного разряда (ампли­тудно-фазовая модуляция).

Требования к системам 3G наиболее полно сформулированы в реко­мендациях IMT-2000 Международным союзом электросвязи (МСЭ). На­иболее важные из них:

  • глобальный роуминг;

  • сочетание пакетной коммутации данных и коммутации каналов;

  • эффективное использование спектра частот;

  • открытая архитектура;

  • обеспечение передачи речи, данных и мультимедийных услуг;

  • качество речи, сопоставимое с проводной связью;

  • защита информации, сопоставимая с уже имеющейся системой в ТфОП/ISDN;

  • взаимная работа со спутниковыми системами;

  • высокая скорость передачи данных;

  • поддержка иерархической структуры сот (HCS — Hierarchical Cell Structure);

  • поэтапный подход к повышению скорости передачи данных до 2 Мбит/с.

В Европе (рис.11.1) преобладает тенденция разработки систем на ос­нове CDMA, совместимых с GSM (в частности, с японскими системами), но не предусматривается совместимость в глобальном масштабе.

В США имеется много сторонников эволюционного развития CDMA One к системе CDMA-2000. При этом ни один из стандартов не предполагает взаимодействия с европейской и японской системой.

Операторы DAMPS и GSM являются сторонниками дальнейшего развития систем на базе временного разделения каналов (TDMA). В ре­зультате пока глобальный роуминг видится возможным только с исполь­зованием многорежимного телефона.

Последнее требование особенно важно для поставщиков услуг, опе­раторов и производителей аппаратуры. Они заинтересованы в том, чтобы предоставлять лучшие услуги (естественно, получая прибыли), но при этом сохранить доходы с уже вложенных средств (защита инвестиций). Поэтому наиболее подходящим является эволюционный путь развития. Один из многих вариантов такой эволюции пока­зан на рис.11.1.

В связи с этим разрабатываемые стандарты должны предусматри­вать совместимость с их предшественниками. Конечная цель заключа­ется в том, чтобы имеющиеся телефоны могли обслужить соединение при перемещении мобильной станции между сотами, базирующимися на старых и новых технологиях. Имеются различные направления эво­люции.

AMPS Advanced Mobile Phone Service Усовершенствованная служба мобильной связи CDMA (One IS-95) Система второго поколения, реализованная на базе стандарт. IS-95

CDMA 2000 Название проекта стандарта, который разработан в рамках программы IMT-2000 DAMPS Digital AMPS Цифровая Усовершенствованная служба мобильной связи

EDGE Enhanced Data rate for GSM (Технология) увеличения скорости данных для

Evolution передачи данных в сетях GSM

FHCDMA Frequency Hopping — CDMA CDMA со скачкообразной перестройкой частоты GPRS General Packet Radio Service Услуги Пакетной Радиопередачи

GSM Global System for Mobile Глобальная система подвижной связи

communication HDR High Data Rate Система CDMA с высокой скоростью передачи данных

MCDMA Multi-Carrier CDMA Многочастотный -CDMA

PDC Personal Digital Cellular Персональная цифровая сотовая связь

UWC-136 Universal Wireless Проект стандарта системы 3-го поколения

Communication IS-136 на основе проекта EDGE

THCDMA Time Hopping — CDMA CDMA с псевдослучайной перестройкой во времени

WCDMA Wideband CDMA Широкополосный CDMA

1XMS CDMA lx Multi Carrier Гибридная технология, сочетающая частотное

разделение с кодовым разделением каналов lXtrem Высокоскоростная технология развивающая IMT-2000

3XMS CDMA ЗХ Multi Carrier Гибридная технология, сочетающая многочастотное разделение с кодовым разделением каналов

Рис. 11.1. Пути эволюции к системе 3G

В апреле 2007г. Федеральным агенством связи (Россвязь) проводил­ся конкурс на право предоставления услуг подвижной радиотелефонной связи с использованием полос частот в трех диапазонах 1935-1950 МГЦ, 2010-2015 МГЦ, 2125, 2140 МГЦ. Это, по сути явилось началом внедрения услуг 3G на территории России. Если рассмотреть сегодняшние прогно­зы систем 3G, то они сводятся к трем моментам;

  1. Системы, относящиеся к 3G, являются наиболее совместимыми с существующим оборудованием, дешевыми и имеют большие пер­спективы развития, поскольку в них вложены большие средства и имеется хорошая административная база.

  2. Россия имеет уникальный шанс сразу перейти на широкополос­ную систему (наиболее вероятно — это система WiMAX будет ска­зано далее, но может быть, как показывают последние события, и система LTE).

  3. Система 3G и широкополосные системы имеют разные сектора применения на рынке услуг и могут существовать параллельно.

Рассмотрение доводов в защиту каждого из этих направлений выхо­дит за рамки этой книги. Ниже приведены основные сведения о системах, охватываемых понятием систем 3G, и их характеристикам. Естественно, что системы развиваются стремительно во времени, и в ближайшее время можно ожидать новых свойств, например, повышения скоростей и рас­ширения услуг до уровня, сравнимого с системами широкополосной мо­бильной связи

Работы по созданию системы IMT-2000 началась в 1992 г., когда стало ясно, что мобильные системы играют все более и более важную роль.

Проект ITU-2000 (International Mobile Telecommunication — 2000 — Междуна­родная мобильная связь - 2000) ставил цели:

  • предполагаемое ITU начало работы этой системы — 2000 год;

  • скорость передачи данных 2000 Кбит/с;

  • область значения частоты, которую ITU хотел бы сделать доступ­ной для новой технологии, — 2000 МГц.

Ни одна из этих задач не была полностью выполнена, но название закрепилось.

IMT-2000, как предполагалось, сможет охватывать все возмож­ные применения беспроводной связи. Например:

  • беспроводные сети доступа и локальные вычислительные сети (LAN) смогут обеспечить пользователям высокие скорости пере­дачи данных на улице, в офисе и дома;

  • связь через спутники позволила бы людям обращаться к основ­ным речевым службам и услугам передачи данных буквально из любой точки Земли, даже если они находятся вне области, охва­ченной сотовой сетью. Она называется мобильной спутниковой службой (MSS — Mobile Satellite Service) и мобильной глобальной персональной спутниковой связью (GMPCS — Global Mobile Personal Communication by Satellite).

Беспроводные сети IMT-2000 могли бы впервые предоставить связь более бедным странам, обеспечивая их сравнительно дешевым и быстрым путем совместного развития наземных и мобильных линий связи.

Теоретически, ориентируясь на использование всех типов беспро­водных услуг по единственной системе радиосвязи, пользователи могли приобретать для них единое устройство. Они могли использовать мобиль­ный телефон как домашний переносной телефон или даже делать вызовы через спутник посреди океана. Промышленность могла бы экономить деньги, потому что составляющие устройство компоненты развивались бы для одного типа технологии и могли бы легко применяться в разных странах.

Первоначально МСЭ надеялся создать единый стандарт универсаль­ной системы подвижной связи, однако по прошествии времени стало яс­но, что, несмотря на относительную несложность формулировки основ­ных требований к системе 3G, весьма непростым вопросом оказалась раз­работка стратегии достижения этих требований. Большинство этих идей было оставлено к 1999 г., когда были созданы первые прототипы оборудо­вания IMT-2000.

Фиксированные беспроводные системы (беспроводный доступ и ло­кальные сети) лучше всего работают на намного более высоких частотах, чем обычные мобильные телефоны.

Спутниковые телефоны являются более дорогими и имеют намного большие размеры, чем те, которыми готово воспользоваться большинст­во людей. Беспроводные LAN получают развитие в некоторых областях — например, беспроводная работа по Интернету на улице и в движении, но реализация этих стандартов в рамках IMT-2000 маловероятна, поэтому IMT-2000 сегодня имеет наиболее эффективную цель — это высокоско­ростная передача данных по сотовой сети.

11.2 Основные процедуры LTE. Процедуры физического уровня. Управление доступом к среде. Обеспечение качества обслуживания. Служба планирования управления доступом к среде. Управление мощностью. Инициализация вызова и запрос полосы. Передача вызова (хэндовер). Безопасность.

Одной из технологий, призванных для решения насущных задач современных телекоммуникаций, является технология Long Term Evolution, или, сокращённо, LTE-технология. Соответственно этому, сети мобильной связи, реализованные на основе такой технологии, называют LTE-сети.

В конце 2009 г. шведско-финский оператор телекоммуникационных услуг TeliaSonera совместно с производителем телекоммуникационного оборудования Ericsson объявили о запуске в городах Стокгольм и Осло первой в мире коммерческой LTE-сети с заявленной скоростью передачи данных до 80 Мбит/с. К настоящему моменту (май 2011 г.) в мире насчитывается около 20 функционирующих в коммерческом режиме сетей LTE, при этом ещё около 50 сетей либо уже эксплуатируются в тестовом режиме, либо готовятся к запуску в ближайшее время.

Условность понятия «сети LTE», под которой — вопреки требованиям однозначной критериальности в технической терминологии — понимают и систему, и сеть, и, наконец, сетевую технологию четвёртого поколения. Сети LTE являются дальнейшим развитием се-тей UMTS третьего поколения. К сетям LTE относится большая часть спецификаций для сетей UMTS, в том числе, касающихся предоставления пользовательских услуг.

LTE базируется на трех основных технологиях: мультиплексирование посредством ортогональных несущих OFDM (Orthogonal Frequency-Division Multiplexing), многоантенные системы MIMO (Multiple Input Multiple Output) и эволюционная системная архитектура сети (System Architecture Evolution).

Принципиально, что дуплексное разделение каналов может быть как частотным (FDD), так и временным (TDD). Это позволяет операторам очень гибко использовать частотный ресурс. Такое решение открывает путь на рынок тем компаниями, которые не обладают спаренными частотами. С другой стороны, поддержка FDD очень удобна для традиционных сотовых операторов, поскольку у них спаренные частоты есть "по определению" – так организованы практически все существующие системы сотовой связи. Сама же по себе система FDD существенно более эффективна в плане использования частотного ресурса, чем TDD, – в ней меньше накладных расходов (служебных полей, интервалов и т.п.).

Обмен между базовой станцией (БС) и мобильной станцией (МС) строится по принципу циклически повторяющихся кадров (в терминологии LTE – радиокадр) [9]. Длительность радиокадра – 10 мс. Все временные параметры в спецификации LTE привязаны к минимальному временному кванту Ts = 1 / (2048·∆f), где ∆f – шаг между поднесущими, стандартно – 15 кГц. Таким образом, длительность радиокадра – 307200Ts. Сам же квант времени соответствует тактовой частоте 30,72 МГц, что кратно стандартной в 3G-системах (WCDMA с полосой канала 5 МГц) частоте обработки 3,84МГц (8×3,84 = 30,72).

Стандарт LTE предусматривает два типа радиокадров. Тип1 предназначен для частотного дуплексирования – как для полного дуплекса, так и для полудуплекса. Такой кадр состоит из 20 слотов (длительностью 0,5 мс), нумеруемых от 0 до 19. Два смежных слота образуют субкадр (рис.5). При полнодуплексном режиме радиокадры в восходящем и нисходящем каналах передаются параллельно, но с оговоренным в стандарте временным сдвигом.

Радиокадр типа 2 (рис.6) предназначен только для временного дуплексирования. Он состоит из двух полукадров длительностью по 5 мс. Каждый полукадр включает 5 субкадров длительностью 1 мс. Стандарт предусматривает два цикла временного дуплексирования – 5 и 10 мс. В первом случае 1-й и 6-й субкадры идентичны и содержат служебные поля DwPTS, UpPTS и защитный интервал GP. При 10-мс цикле TDD 6-й субкадр используется для передачи данных в нисходящем канале. Субкадры 0 и 5, а также поле DwPTS всегда относятся к нисходящему каналу, а субкадр 2 и поле UpPTS– к восходящему. Возможно несколько вариантов длительности полей DwPTS, UpPTS и GP, но их сумма всегда равна 1 мс.

Архитектуру сетей LTE можно назвать «плоской», поскольку практически всё сетевое взаимодействие происходит между двумя узлами: базовой станцией (БС), которая в технических спецификациях называется B-узлом (Node-B, eNB) иблоком управления мобильностью БУМ (MME, Mobility Management Entity), реализационно, как правило, включающим исетевой шлюз Ш (GW, Gateway), т. е. имеют место комбинированные блоки MME/GW.

Отметим, что контроллер радиосети, игравший весьма значительную роль в сетях предыдущих поколений, устранён от управления потоком данных (фактически он даже отсутствует в структурных схемах), а его традиционные функции — управление радиоресурсами сжатие заголовков, шифрование, надёжная доставка пакетов и др. переданы непосредственно БС.

БУМ работает только со служебной информацией — так называемой сетевой сигнализацией, так что IP-пакеты, содержащие пользовательскую информацию, через него не проходят. Преимущество наличия такого отдельного блока сигнализации в том, что пропуск-ную способность сети можно независимо наращивать как для пользовательского трафика, так и для служебной информации. Главной функцией БУМ является управление пользовательскими терминалами (ПТ), находящимися в режиме ожидания, включая перенаправление и исполнение вызовов, авторизацию и аутентификацию, роуминг и хэн-довер, установление служебных и пользовательских каналов и др.

Описание физического уровня LTE

Стандарт LTE на физическом уровне использует технологию Orthogonal Freuency Division Multiplexing (OFDM). Отметим, что эта технология решает проблему устранения межсимвольной интерференции, которая возникает при высокоскоростной передаче данных из-за многолучевого распространения сигнала.

В спецификации для указания различных длительностей по оси времени используется понятие временной единицы TS = 1/(15000x2048) с. Передача по радиоканалу осуществляется кадрами (frame) длиной Tf = 307200xTS = 10 мс. При этом поддерживаются две структуры кадров. Одна для случая частотного дуплекса (Frequency Division Duplex, FDD), другая - для временного дуплекса (Time Division Duplex, TDD).

Структура кадров

Сначала рассмотрим кадр для случая FDD. Каждый кадр состоит из 20 слотов длиной Tslot = 15360xTS = 0.5 мс, которые пронумерованы от 0 до 19. Кроме этого, выделяется понятие подкадра (subframe), который состоит из двух соседних слотов, то есть подкадр с номером i включает в себя слоты с номерами 2i и 2i+1.

В случае FDD нисходящий (downlink) и восходящий (uplink) каналы передаются на разных частотах, поэтому в каждом 10 мс интервале времени имеется 10 подкадров для передачи "вниз" и 10 подкадров для передачи "вверх".

На рисунке ниже изображена структура кадра для случая FDD.

Теперь рассмотрим кадр для случая TDD. В данном случае кадр так же состоит из 10 подкадров длиной 1 мс. Однако, в отличие от FDD случая, в TDD случае в некоторых подкадрах идет передача "вниз", а в некоторых "вверх". Кроме этого, существуют специальные подкадры, которые состоят из трех частей: DwPTS - поля передачи "вниз", GP - защитного интевала и UpPTS - поля передачи "вверх". Поддерживаются две возможные конфигурации периодичности передключения с периодом переключения 5 мс и 10 мс. В случае переключения с периодом 10 мс специальный подкадр присутствует только в первой половине кадра. В случае же с 5 мс перключением специальный подкадр существует в обоих половинах кадра. Именно этот случай и представлен на следующем рисунке

Ниже в таблице представлены все возможные конфигурации при TDD.

В таблице буквой "D" обозначены подкадры, в которых осуществляется передача "вниз", "U" - подкадры, в которых осуществляется передача "вверх", а "S" - специальные подкадры. Как видно из таблицы, в подкадрах 0 и 5 всегда осуществляется передача "вниз", а в подкадре, следующим за специальным, всегда осуществляется переда "вверх".

Характеристики канального ресурса

При использовании технологии OFDM передача данных осуществляется на множестве частотных поднесущих (subcarrier). При расстоянии между поднесущими ΔF = 15 кГц (опционально возможен еще вариант с 7.5 кГц) длительность OFDM символа составляет 1/ΔF = 66.7 мкс. В каждом слоте (0.5 мс) передают 6 или 7 OFDM символов в зависимости от длительности циклического префикса (Cyclic Prefix, CP). Длительность циклического

префикса равна TCP = 160xTS = 5.2 мкс перед первым символом и TCP = 144xTS = 4.7 мкс

перед остальными символами. Также есть возможность использования расширенного циклического префикса длительностью TCP = 512xTS = 16.7 мкс. В этом случае в одном слоте передаются 6 OFDM символов. На рисунке ниже представлены оба варианта структуры слота.

Весь канальный ресурс разбивается на ресурсные блоки (РБ, Resource Block, RB). Один блок состоит из 12 расположенных рядом поднесущих, занимающих полосу 180 кГц, и одного временного слота (6 или 7 OFDM символов общей длительностью 0.5 мс). Каждый OFDM символ на каждой из поднесущих образует ресурсный элемент (РЭ, Resource Element, RE), который характеризуется парой значений {k, l}, где k - номер поднесущей, l - номер символа в ресурсном блоке. При обычной конфигурации (со стандартной длительностью циклического префикса и, следовательно, с 7-ю OFDM символами в одном слоте) в нисходящем канале каждый ресурсный блок включает в себя 12x7 = 84 ресурсных элемента.

Часть из ресурсных элементов используется для передачи пилотного (опорного, reference) сигнала, который используется для синхронизации и оценки состояния радиоканала. Эти сигналы передаются в первом и пятом OFDM символе каждого слота при стандартной длине циклического префикса и в первом и четвертом - при расширенной длине циклического префикса. При этом, в частотной области эти сигналы разносятся на фиксированную величину. Ниже на рисунке приводится схема ресурсного блока с указанием ресурсных элементов, в которых передаются пилотные сигналы при стандартной длине циклического префикса. При восходящей передаче используют те же понятия ресурсного блока и подкадра. При этом выделение ресурса пользовательским устроствам происходит на всю длительность подкадра.

Внастоящее время пользователи могут запускать большое множество различных приложений на своих клиентских устройствах. При этом каждое приложение имеет свои требования к качеству обслуживания. Для того, чтобы обеспечить соблюдение параметров QoS для множества приложений, создаются различные EPS потоки. Все возможные EPS потоки можно разбить на две большие группы: потоки с гарантированной минимальной скоростью передачи (Minimum Guaranteed Bit Rate, GBR) и потоки без гарантий по скорости передачи данных (Non-GBR). Рассмотрим эти два типа потоков чуть более подробно.

GBR потоки. Потоки этого типа имеют заданное значение минимальной скорости передачи, которое устанавливается во время процедур создания потока или его изменения. При этом, возможна передача данных с большей скоростью, чем минимально установленная, если есть свободные ресурсы на радио канале. Также может быть установлено ограничение на максимальную скорость передачи данных (Maximum Bit Rate, MBR). Потоки такого типа используются, например, при передаче VoIP трафика.

Non-GBR потоки. Потоки данного типа не гарантируют никакой минимальной скорости передачи данных. Поэтому эти потоки используются для передачи трафика при просмотре интернет страниц и при передаче файлов по FTP.

На участке между eNodeB и UE обеспечением параметров QoS занимается eNodeB. Для этого каждому потоку приписан идентификатор QoS класса (QoS Class Identifier, QCI). Каждый QCI определяет значения для следующих параметров QoS: приоритет, допустимая задержка и допустимое количество потерянных пакетов. Все возможные значения QCI, а также значения параметров QoS, относящиеся к конкретному QCI, определены в спецификации. Что должно обеспечить одинаковую обработку потоков одного и того же типа на оборудовании различных производителей. На рисунке ниже приводится определенное множество QCI и их характеристик. Отметим, что значение допустимой задержки определяется на участке между P-GW и UE.

Как правило, значения приоритета и допустимой задержки определяют каким образом планировщик на eNodeB будет обрабатывать пакеты данных. Если значение допустимых потерь равно 10-6, то будет использоваться передача с подтверждением.

При передаче данных по сети пользовательские потоки должны пройти несколько интерфейсов (LTE-Uu, S1, S5/S8) прежде, чем они попадут во внешнюю сеть или на UE. На каждом интерфейсе EPS потоки отображаются на потоки более низких уровней, которые имеют свои идентификаторы. Каждый узел обеспечивает соответствие идентификаторов потока на различных интерфейсах (к которым этот узел имеет отношение). Отметим, что на интерфейсах S1 и S5/S8 поток определяется идентификатором GTP туннеля. Пакеты, относящиеся к одному и тому же EPS потоку, всегда обрабатываются одинаковым образом.

Классификация входящих пакетов для определения к какому потоку они относятся осуществляется с помощью TFT (Traffic Flow Template). Эти шаблоны используют информацию из IP заголовка пакета такую, как IP адреса отправителя и получателя и номера TCP портов.

В LTE используется модуляция OFDM, хорошо исследованная в системах DVB, Wi-Fi и WiMAX. Напомним, технология OFDM предполагает передачу широкополосного сигнала посредством независимой модуляции узкополосных поднесущих вида Sk(t) = Ak·sin [2π (fk+ k∆f)], расположенных с определенным шагом по частоте ∆f. Один OFDM-символ содержит набор модулированных поднесущих. Во временной области OFDM-символ включает поле данных (полезная информация) и так называемый циклический префикс CP (Cyclic Prefix) – повторно передаваемый фрагмент конца предыдущего символа. Назначение префикса – борьба с межсимвольной интерференцией в приемнике вследствие многолучевого распространения сигнала. Отраженный сигнал, приходящий с задержкой, попадает в зону префикса и не накладывается на полезный сигнал. В LTE принят стандартный шаг между поднесущими ∆f = 15 кГц, что соответствует длительности OFDM-символа 66,7 мкс.

Каждому абонентскому устройству (АУ) в каждом слоте назначается определенный диапазон канальных ресурсов в частотно временной области – ресурсная сетка. Ячейка ресурсной сетки – так называемый ресурсный элемент – соответствует одной поднесущей в частотной области и одному OFDM-символу во временной. Ресурсные элементы образуют ресурсный блок – минимальную информационную единицу в канале. Ресурсный блок занимает 12 поднесущих (т.е. 180кГц) и 7 или 6 OFDM-символов, в зависимости от типа циклического префикса (табл.2) – так, чтобы общая длительность слота составляла 0,5 мс. Число ресурсных блоков NRB в ресурсной сетке зависит от ширины полосы канала и составляет от 6 до 110 (ширина частотных полос восходящего/нисходящего каналов в LTE – от 1,4 до 20 МГц). Ресурсный блок – это минимальный ресурсный элемент, выделяемый абонентскому устройству планировщиком базовой станции. О распределении ресурсов в каждом слоте базовая станция сообщает в специальном управляющем канале.

Длительность префикса 4,7 мкс позволяет бороться с задержкой отраженного сигнала, прошедшего путь на 1,4 км больше, чем прямо распространяющийся сигнал. Для систем сотовой связи в условиях города этого обычно вполне достаточно. Если же нет – используется расширенный префикс, обеспечивающий подавление межсимвольной интерференции в ячейках радиусом до 120 км. Такие огромные ячейки полезны для разного рода шикроковещательных сервисов (MBMS), таких как мобильное ТВ-вещание. Для этих же режимов (только в нисходящем канале) предусмотрена особая структура слота, с шагом между поднесущими 7,5 кГц и циклическим префиксом 33,4 мкс. В слоте при этом всего три OFDM-символа. Особый случай широковещательного сервиса представляет режим MBSFN (мультимедийный широковещательный сервис для одночастотной сети). В этом режиме несколько БС в определенной MBSFN-зоне одновременно и синхронно транслируют общий широковещательный сигнал.

Каждая поднесущая модулируется посредством 4-, 16- и 64- позиционной квадратурной фазово-амлитудной модуляции (QPSK, 16-QAM или 64-QAM). Соответственно, один символ на одной поднесущей содержит 2, 4 или 6 бит. При стандартном префиксе символьная скорость составит 14000 символов/с, что соответствует, при FDD-дуплексе, агрегатной скорости от 28 до 84 кбит/с на поднесущую. Сигнал с полосой 20 МГц содержит 100 ресурсных блоков или 1200 поднесущих, что дает общую агрегатную скорость в канале от 33,6 до 100,8 Мбит/с.

Спецификации LTE определяют несколько фиксированных значений для ширины восходящего и нисходящего канала между БС и АС (в сетях E-UTRA) (табл.3.). Поскольку в OFDM используется быстрое преобразование Фурье (БПФ), число формальных поднесущих для упрощения процедур цифровой обработки сигнала должно быть кратно N = 2n (т.е. 128, 256, ..., 2048). При этом частота выборок должна составлять Fs = ∆f · N. При заданных в стандарте значениях она оказывается кратной 3,84МГц – стандартной частоте выборок в технологии WCDMA. Это очень удобно для создания многомодовых устройств, поддерживающих как WCDMA, так и LTE. Разумеется, при формировании сигнала амплитуды "лишних" поднесущих (включая центральную поднесущую канала) считаются равными нулю.

Нисходящий канал

В нисходящем и восходящем канале применение технологии OFDM различно. В нисходящем канале эта технология используется не только для передачи сигнала, но и для организации множественного доступа (OFDMA) – т.е. для мультиплексирования абонентских каналов.

Помимо описанного физического структурного блока вводится понятие логического структурного блока. По числу ресурсных элементов они эквивалентны, однако возможно два варианта отображения ресурсных элементов физического блока в логический – один в один и распределенно. В последнем случае элементы логического ресурсного блока оказываются распределенными по всей доступной ресурсной сетке.

В отличие от пакетных сетей, в LTE нет физической преамбулы, которая необходима для синхронизации и оценки смещения несущей. Вместо этого в каждый ресурсный блок добавляются специальные опорные и синхронизирующие сигналы. Опорные сигналы могут быть трех видов – опорный сигнал, характеризующий ячейку (Cell-specific), сигнал, связанный с конкретным абонентским устройством, и сигнал для специального широковещательного мультимедийного сервиса MBSFN. Опорный сигнал служит для непосредственного определения условий в канале передачи (поскольку приемнику известно его месторасположение и исходная форма). На основе этих измерений можно определить реакцию канала для остальных поднесущих и с помощью интерполяции восстановить их исходную форму.

Опорный сell-specific-сигнал должен присутствовать в каждом субкадре нисходящего канала (кроме случаев MBSFN-передачи). Форма сигнала определяется на основе псевдослучайной последовательности Голда (вариант m-последовательности), при инициализации которой используется идентификационный номер ячейки БС (Cell ID). Такой опорный сигнал равномерно распределен по ресурсным элементам (рис.9). Так, при стандартной длине префикса он транслируется в 0-м и 4-м OFDM-символе, при расширенном СР – во время 0-го и 3-го OFDM-символа. В частотной области опорные сигналы передаются через каждые шесть поднесущих, причем смещение определяется идентификатором ячейки, взятым по модулю 6.

Помимо опорных сигналов, в нисходящем канале транслируются и синхронизирующие сигналы. Синхронизирующие сигналы также однозначно определяют Cell ID. В LTE принята иерархическая структура идентификации ячейки, как и в прешествующей ей технологии WCDMA. Предполагается, что на физическом уровне доступно 504 Сell ID. Они разбиты на 168 ID-групп, по 3 идентификатора в каждой. Номер группы N1 (0–167) и номер идентификатора в ней N2 (0–2) однозначно определяют ID ячейки. Используется два синхросигнала – первичный и вторичный. Первичный синхросигнал представляет собой 62-элементную последовательность в частотном плане, задаваемую последовательностью Задова-Чу на основе идентификатора N2. Такая последовательность из 62 поднесущих, распределенных по ресурсной сетке симметрично относительно ее центральной частоты, передается в радиокадре типа 1 в последнем OFDM-символе слотов 0 и 10 (субкадры 0 и 5). Врадиокадре типа 2 для передачи первичного синхросигнала используется третий OFDM-символ субкадров 1 и 6. Вторичный синхросигнал генерируется на основе номера ID-группы N1. Он передается в слотах 0 и 10 радиокадра типа 1 (пятый OFDM-символ при стандартном СР) и в слотах 1 и 11 радиокадра типа2 (шестой OFDM-символ при стандартном СР).

Формирование сигнала в нисходящем канале достаточно стандартно для современных систем цифровой передачи информации (рис.10). Оно включает процедуры канального кодирования, скремблирования, формирования модуляционных символов, их распределения по антенным портам и ресурсным элементам и синтеза OFDM-символов. Канальное кодирование подразумевает вычисление контрольных сумм (CRC-24) для блоков данных, поступающих с МАС-уровня. Затем блоки с контрольными суммами обрабатываются посредством кодера со скоростью кодирования 1/3. В LTE предусмотрено применение либо сверточного кода, либо турбо-кода. Кодированная последовательность после перемежения (интерливинга) поступает в скремблер (для входной последовательности {x(i)} выполняется процедура вида dscr(i) = x(i) + c(i), где c(i) – определенная скремблирующая последовательность). Затем формируются комплексные модуляционные символы (QPSK, 16- и 64-QAM) и распределяются по ресурсным элементам. Далее происходит синтез OFDM-символов, их последовательность посупает в модулятор, формирующий выходной ВЧ-сигнал в заданном частотном диапазоне. На стороне приема все процедуры выполняются в обратном порядке.

Восходящий канал

Применение OFDM в сочетании с циклическим префиксом делает связь устойчивой к временной дисперсии параметров радиоканала, в результате на приемной стороне становится не нужным сложный эквалайзер. Это очень полезно для организации нисходящего канала, поскольку упрощается обработка сигнала приемником, что снижает стоимость терминального устройства и потребляемую им мощность.

В восходящем канале допустимая мощность излучения значительно ниже, чем в нисходящем. Поэтому первичным становится энергетическая эффективность метода передачи информации с целью увеличения зоны покрытия, снижения стоимости терминального устройства и потребляемой им мощности.

Основной недостаток технологии OFDMА – высокое соотношение пиковой и средней мощности сигнала (PAR). Это связано с тем, что во временной области спектр OFDM-сигнала становится аналогичным Гауссову шуму, характеризующемуся высоким PAR. Кроме того, сама по себе технология OFDMА, с учетом необходимости минимизировать шаг между поднесущими и сокращать относительную длительность СР, предъявляет очень высокие требования к формированию композитного сигнала. Мало того, что частотные рассогласования между передатчиком и приемником и фазовый шум в принимаемом сигнале могут привести к межсимвольной интерференции на отдельных поднесущих (т.е. к интерференции между сигналами различных абонентских каналов). При малом шаге между поднесущими к аналогичным последствиям может привести и эффект Доплера, что очень актуально для систем сотовой связи, предполагающих высокую мобильность абонентов.

В связи с этим для восходящего канала LTE была предложена новая технология – SC-FDMA (Single-Carrier Frequency-Division Multiple Access). Принципиальное ее отличие – если в OFDMA на каждой поднесущей одновременно передается свой модуляционный символ, то в SC-FDMA поднесущие модулируются одновременно и одинаково, но модуляционные символы короче. То есть в OFDMA символы передаются параллельно, в SC-FDMA – последовательно. Такое решение обеспечивает меньшее отношение максимального и среднего уровней мощности по сравнению с использованием обычной модуляции OFDM, в результате чего повышается энергоэффективность абонентских устройств и упрощается их конструкция (существенно снижаются требования к точности частотных параметров передатчиков).

Структура SC-FDMA-сигнала во многом аналогична технологии OFDM. Так же используется композитный сигнал – модуляция множества поднесущих, расположенных с шагом ∆f. Принципиальное отличие в том, что все поднесущие модулируются одинаково – т.е. единовременно передается только один модуляционный символ (рис.11).

При этом ресурсная сетка полностью аналогична нисходящему каналу. Так же каждый физический ресурсный блок, соответствующий слоту, занимает 12 поднесущих с шагом ∆f = 15кГц в частотной области (всего 180 кГц) и 0,5мс– во временной. Ресурсному блоку соответствуют 7SC-FDMA-символов при стандартном циклическом префиксе и 6 – при расширенном. Длительность SC-FDMA-символа (без префикса) равна длительности ОFDMA-символа и составляет 66,7мкс (длительности соответствующих циклических префиксов также равны). В сетке может быть от 6 до 110 ресурсных блоков, но их число должно быть кратно 2; 3 или 5, что связано с процедурой дискретного Фурье-преобразования. Еще одна особенность – поддержка модуляции 64-QAM в АУ опциональна.

Каждому абоненту сети для передачи данных от базовой станции с помощью функции планирования на определенное время выделяется определенное число ресурсных блоков. Расписание передается абонентам по служебным каналам в нисходящем радиоканале.

Однако если при OFDMA один модуляционный символ (QPSK, 16- или 64-QAM) соответствует OFDM-символу на одной поднесущей (15 кГц, 66,7 мкс), то при SC-OFDMA ситуация иная. В частотном плане ширина модуляционного символа оказывается равной всей доступной полосе частот (он передается на всех поднесущих одновременно). При этом один SC-FDMA-символ содержит несколько модуляционных символов – в идеале столько же, сколько поднесущих – но в соответствующее число раз более коротких по сравнению с OFDMA, что полностью отвечает условиям теоремы Котельникова-Шеннона.

Сама процедура формирования SC-FDMA-сигнала отличается от схемы OFDMA. После канального кодирования, скремблирования и формирования модуляционных символов они группируются в блоки по М символов – субсимволов SC-FDMA (рис.12). Очевидно, что непосредственно отнести их на поднесущие с шагом 15 кГц невозможно – требуется в N раз более высокая частота, где N – это число доступных для передачи поднесущих. Поэтому, сформировав группы по М модуляционных символов (М < N), их подвергают М-точечному дискретному Фурье-преобразованию (ДПФ), т.е. формируют аналоговый сигнал. А уже затем с помощью стандартной процедуры обратного N-точечного Фурье-преобразования синтезируют сигнал, соответствующий независимой модуляции каждой поднесущей, добавляют циклический префикс и генерируют выходной ВЧ-сигнал. В результате такого подхода передатчик и приемник OFDMA- и SC-FDMA-сигналов имеют схожую функциональную структуру (см. рис.10 и 12).

Отметим, что АУ может использовать как фиксированный частотный диапазон (используются смежные ресурсные блоки, т.е. смежные поднесущие), так и распределенный – так называемый режим скачкообразной перестройки частоты (FH). В последнем случае для каждого слота восходящего канала используется новый ресурсный блок из доступной ресурсной сетки. Параметры перестройки частоты задаются сетевым оборудованием и сообщаются как при инициализации абонентской станции в сети, так и по ходу работы в канале управления. В случае распределенного способа – информация от каждого абонента распложена во всем спектре сигнала (рис.13), поэтому данный способ устойчив к частотно-избирательному замиранию. С другой стороны, при локализованном способе распределения возможно определить полосу, в которой для данного абонента достигается максимальная устойчивость канала к замираниям. Поскольку области замирания сигнала для всех абонентов различны, то можно достичь общую максимальную эффективность использования радиоканала. Однако это требует непрерывного сканирования частотной характеристики канала для каждого устройства и организации функции диспетчеризации.

Помимо собственно информации, генерируемой функциями верхних уровней, в восходящем канале передаются опорные сигналы. Их назначение – помочь приемнику БС настроиться на определенный передатчик АУ. Кроме того, эти сигналы позволяют оценить качество канала, что используется в БС при диспетчеризации ресурсов. Опорные сигналы в восходящем канале бывают двух видов – так называемые "демодулированные" и зондовые (sounding). Демодулированные опорные сигналы аналогичны опорным сигналам нисходящего канала. Они передаются на постоянной основе. Так, в общем информационном канале последовательность демодулированного опорного сигнала передается в четвертом SC-FDMA-символе каждого слота при стандартом СР. Зондовые сигналы апериодичны. Их основное назначение – дать БС возможность оценить качество канала, если передача еще не ведется.

Информационные потоки

До сих пор мы говорили о способе формирования физического канала обмена между абонентскими и базовыми станциями. Однако как в восходящем, так и в нисходящем каналах передаются различные типы информационных потоков.

В восходящем канале их три – канал общего пользования назначения (PUSCH), управляющий канал (PUCCH) и канал произвольного доступа (PURCH). Назначение первого очевидно – передача информации пользователей.

Управляющий канал содержит такую информацию, как индикатор качества канала, сообщения подтверждения доставки (ACK/NACK) и запрос на получение расписания (о доступных ресурсах). Канал общего пользования и управляющий канал никогда не транслируются одновременно одним АУ. Для передачи управляющего канала используются один ресурсный блок в каждом из слотов одного субкадра. В зависимости от формата PUCCH возможно четыре варианта его расположения на ресурсной сетке (рис.14), определяемые переменной m.

Канал произвольного доступа служит для запроса начальной инициализации в сети, при хендовере, при выходе из режима ожидания в активный режим и т.п. Абонентской станции назначается интервал в ресурсной сетке (номер физического ресурсного блока и номер субкадра), в течение которого она передает специальный пакет – преамбулу произвольного доступа. Преамбула генерируется на основе последовательностей Задова-Чу с нулевой зоной корреляции, всего определено64 различных преамбулы на одну ячейку. БС, приняв запрос доступа, отвечает в том же самом канале произвольного доступа (но уже нисходящем) подтверждением. Если подтверждение не получено, АУ повторяет запрос.

В нисходящем направлении информационных каналов гораздо больше. Это общий канал (Physical Downlink Shared Channel– PDSCH); канал управления (Physical Downlink Control Channel – PDCCH); канал групповой передачи (Physical Multicast Channel – PMCH); широковещательный канал (Physical Broadcast Channel– PBCH); индикаторный канал управления форматом (Physical Control Format Indicator Channel– PCFICH) и индикаторный канал гибридной процедуры повторного запроса (HARQ) Physical Hybrid ARQ Indicator Channel (PHICH). Назначение общего канала очевидно – передача данных конкретным абонентским устройствам. В канале управления PDCCH передаются таблицы с назначением канальных ресурсов абонентским устройствам – как в нисходящем, так и в восходящем каналах. В канале PCFICH, который передается в каждом субкадре, указываются номера OFDM-символов, которые используются для трансляции сообщений канала управления PDCCH. Канал PHICH предназначен для подтверждения доставки данных в восходящем канале. Назначение каналов групповой передачи и широкого вещания также очевидны. Отметим особенность широковещательного канала – каждый блок транспортного широковещательного канала (с верхних уровней протокола) транслируется в четырех субкадрах, следующих с жестко фиксированным интервалом в 40 мс. Это исключает необходимость в дополнительных указателях на расположение этих субкадров.

Многоантенные системы

Как и все современные технологии беспроводной связи, в LTE поддерживаются многоантенные системы (MIMO). Учитывая ориентацию этой технологии на максимально простые абонентские устройства, техника MIMO в LTE максимально упрощена. Стандарт рассматривает MIMO-схемы, 1, 2 и 4 передающих и приемных антенн в различных сочетаниях. В MIMO-системах есть два основных вида передачи – пространственное мультиплексирование и диверсифицированная передача. Первый режим означает, что каждый антенный канал транслирует независимый информационный поток. При этом сами каналы должны быть некоррелированными. Возможно два вида пространственно-мультиплексированной передачи – для одного АУ (SU-MIMO) и для группы АУ (MU-MIMO). В первом случае БС передает несколько независимых потоков данных одному АУ. При этом в АУ должно быть по крайней мере не меньше антенн, чем у БС. В MU-MIMO ресурсные элементы с одинаковыми частотно-временными параметрами должны приниматься к различными АУ (при этом речь о цифровом формировании диаграммы направленности не идет).

Принципиально, что одновременно по всем антенным каналам может передаваться только два кодовых слова (т.е. только два логически независимых информационных потока). Поэтому, несмотря на четыре возможных антенных канала, в режиме MU-MIMO БС в одном частотно-временном диапазоне способна работать только с двумя АУ.

Диверсифицированная передача означает, что несколько антенных каналов используются для передачи одного потока данных. Эта техника предназначена для борьбы с замираниями в радиоканале и направлена только на улучшение качества передачи в канале. На скорость передачи она влияет опосредованно, через повышение качества канала.

В восходящем канале возможна схема пространственного мультиплексирования множества абонентов MU-MIMO. Несколько АУ, каждое с одной антенной, могут использовать одинаковые частотно-временные ресурсы, но за счет декоррелированных антенных каналов БС работает со всеми ними одновременно.

Механизм диспетчеризации и повторные передачи

Под диспетчеризацией понимается процесс распределения сетевых ресурсов между пользователями. Цель диспетчеризации– сбалансировать качество связи и общую производительность системы. В LTE предусмотрена динамическая и статическая диспетчеризация. Динамическая диспетчеризация распределяет ресурсы в зависимости от текущего состояния канала связи. Она обеспечивает передачу данных на повышенных скоростях (за счет модуляции более высокого порядка, уменьшения степени кодировки каналов, передачи дополнительных потоков данных и меньшего числа повторных передач), задействуя для этого временные и частотные ресурсы с относительно хорошими условиями связи. Таким образом, для передачи любого конкретного объема информации требуется меньше времени.

Для трафика сервисов, пересылающих пакеты с небольшой полезной нагрузкой и через одинаковые промежутки времени (например, IP-TV), объем служебной информации, необходимой для динамической диспетчеризации, может превысить объем полезных данных. Для таких случаев в LTE предусмотрена статическая диспетчеризация.

Для надежной передачи информации в технологии LTE реализована ставшая традиционной система повторной передачи Hybrid Automatic Repeat Request (HARQ). Особенность ее реализации в LTE в том, что одновременно может поддерживаться несколько (до 8) HARQ-процессов. Если данные (субкадр), связанные с HARQ-процессом, пришли успешно, приемник отправляет сообщение об успешном приеме/неприеме данных (ACK/NACK). В случае отсутствия подтверждения или сообщения NACK происходит повторная передача. В нисходящем канале расположение и параметры (тип сигнально-кодовой конструкции) повторно передаваемого субкадра сообщаются дополнительно, в канале управления – так называемая адаптивная передача, когда БС выбирает оптимальный ресурс для ретрансляции. В восходящем канале, если АУ не получило сообщения ACK, оно должно повторить передачу. БС может сообщить АУ параметры субкадра для повторной передачи. Если же по каналу управления такого сообщения не поступило, АУ повторяет передачу субкадра с точно такими же параметрами, как и у исходного субкадра, прием которого не был подтвержден – неадаптивная ретрансляция. Повторная передача происходит через заданное в спецификации LTE число субкадров (от 4 до 9), которое зависит от типа дуплексирования, типа радиокадра, схемы распределения каналов в случае TDD и номера неверно принятого субкадра.

Сетевая архитектура SAE

Для технологиии LTE консорциум 3GPP предложил новую сетевую инфраструктуру (SAE – System Architecture Evolution). Цель и сущность концепции SAE – эффективная поддержка широкого коммерческого использования любых услуг на базе IP и обеспечение непрерывного обслуживания абонента при его перемещении между сетями беспроводного доступа, которые не обязательно соответствуют стандартам 3GPP (GSM, UMTS, WCDMA и т.д.) (рис.15) [10].

В сети с архитектурой SAE могут применяться узлы только двух типов — базовые станции (evolved NodeB, eNodeB) и шлюзы доступа (Access Gateway, AGW). Уменьшение числа типов узлов позволит операторам снизить расходы как на развертывание сетей LTE/SAE, так и на их последующую эксплуатацию. Ядро сети SAE включает в себя четыре ключевых компонента:

Модуль управления мобильностью (Mobility Management Entity, MME) обеспечивает хранение служебной информации об абоненте и управление ею, авторизацию терминальных устройств в наземных сетях мобильной связи иобщее управление мобильностью;

Модуль управления абонентом (User Plane Entity, UPE) отвечает за установление нисходящего соединения, шифрование данных, маршрутизацию и пересылку пакетов;

3GPP-якорь играет роль шлюза между сетями 2G/3G иLTE;

SAE-якорь используется для поддержки непрерывности сервиса при перемещении абонента между сетями, как соответствующими спецификациям 3GPP, так и нет (I-WLAN и т.п.).

Последние два компонента представляют собой совершенно новые элементы архитектуры ядра сети мобильной связи (Evolved Packet Core) и обязаны своим появлением требованию поддержки мобильности при перемещении абонента между сетями разных типов.

Функциональные элементы можно по-разному распределять среди аппаратуры сети. Например, 3GPP-якорь допустимо (но не обязательно) располагать вместе с модулем управления абонентом. Аналогично, модули MME и UPE можно совмещать либо реализовывать в разных узлах сети.

Важная особенность SAE – пользовательские данные могут пересылаться между базовыми станциями непосредственно, причем как посредством проводной, так и беспроводной связи (интерфейс Х2). Это особенно важно при хендовере, для быстрого бесшовного переключения пользователя между БС. Разумеется, допустимо передавать данные между БС и через шлюзы транспортной IP-сети. Возможность непосредственной беспроводной передачи данных между БС фактически означает, что в архитектуе SAE заложена функциональность mesh-сети.

Значительное внимание в документах 3GPP Release 8 уделено обеспечению качества сервиса, выбору сети и использованию идентификационных данных. Появление многомодовых терминалов, предназначенных, например, для работы в сетях Wi-Fi и сотовой связи, позволяет обслуживать абонентов с применением разных вариантов доступа. В этой связи в SAE предусмотрены механизмы выбора наиболее удобной инфраструктуры для предоставления услуг, необходимых абоненту.

Как отмечают разработчики SAE, предложенные ими архитектурные изменения позволят значительно уменьшить задержки передачи данных, которые особенно критичны для таких приложений, как VoIP или онлайновые интерактивные игры. В частности, задержки радиосети при передаче данных пользователя не должны превышать 10 мс (5 мс для коротких IP-пакетов при небольшой сетевой нагрузке). Эти значения, по крайней мере, на 50% лучше аналогичных показателей наиболее совершенных сетей 3G.

Дальнейшие пути развития LTE

Не дожидаясь окончания работ над стандартом 3GPP Release8, многие ведущие производители телекоммуникационного оборудования уже представили свои первые опытные образцы устройств, поддерживающих LTE. Так, в феврале 2007 компания Ericsson впервые в мире продемонстрировала работу оборудования LTE со скоростью передачи 144 Мбит/с. В сентябре 2007 компания NTT Docomo представила оборудование LTE со скоростью передачи 200 Мбит/с и потребляемой мощностью менее 100 мВт. В апреле 2008 корпорации LG и Nortel продемонстрировали передачу данных по технологии LTE с пропускной способностью 50 Мбит/с при скорости мобильных абонентов 110 км/ч. 18 сентября 2008 мобильный оператор T-Mobile и Nortel Networks объявили о достижении скоростей передачи 170 Мбит/с для нисходящего соединения и 50 Мбит/с для восходящего соединения. Испытания проводились в машине на средней скорости 67 км/ч в радиусе действия трех базовых станций.

Дальнейшее развитие технологии LTE будет продолжаться в рамках работ над новым стандартом 3GPP Release 10 (LTE Advanced). На сегодня уже сформулированы основные требования, которым должен будет удовлетворять LTE Advanced [11]. По сути, это требования к стандарту мобильных сетей четвертого поколения (4G):

Максимальная скорость передачи данных в нисходящем радиоканале до 1 Гбит/с, в восходящем – до 500 Мбит/с (средняя пропускная способность на одного абонента – в три раза выше, чем в LTE);

Полоса пропускания в нисходящем радиоканале – 70МГц, в восходящем – 40 МГц;

Максимальная эффективность использования спектра в нисходящем радиоканале – 30 бит/c/Гц, в восходящем – 15 бит/c/Гц (втрое выше, чем в LTE);

Полная совместимость и взаимодействие с LTE и другими 3GPP системами.

Для решения этих задач предполагается использовать более широкие радиоканалы (до 100 МГц), ассиметричное разделение полос пропускания между восходящим и нисходящим каналом в случае частотного дуплекса; более совершенные системы кодирования и исправления ошибок; гибридную технологию OFDMA и SС-FDMA для восходящего канала, а также передовые решения в области антенных систем (MIMO).

11.3 Стандарты систем беспроводных телефонов общего пользования. Стандарт DECT. Особенности использования стандарта с кодовым разделением каналов в России. Стандарт PHS.

По мере стремительного развития рынка телекоммуникаций и возрастания требований потребителей все большее значение приобретают и все более активно внедряются в нашу жизнь технические решения, основанные на технологиях радиодоступа. В настоящее время для телефонизации предприятий и офисов активно используются УПАТС и малые УАТС.

Как показывает практика их основной функциональности совершенно недостаточно для удовлетворения потребности в современной, деловой телефонной связи. Поэтому, производители расширяют функциональные возможности своих АТС, оснащая их многофункциональными телефонными аппаратами, системами голосовой почты, системами "автосекретаря" c интерактивными голосовыми подсказками, а также бесшнуровыми абонентскими установками. Системы бесшнуровой офисной связи позволяют повысить

производительность, оперативность работы, т.к. "телефон всегда с собой" и вызов может быть принят или совершен вне зависимости от нахождения на рабочем месте.

Для подобных систем характерна быстрота установки, удобство и низкие затраты на проведение монтажных работ. Тем не менее, чтобы конкурировать на равных с проводными сетями, беспроводные технологии должны обеспечивать такое же разнообразие услуг. При этом основными требованиями являются: качество речи не хуже, чем в проводных сетях, а скорость передачи данных отвечает требованиям заказчиков.

Стандарты, использующиеся в системах бесшнуровой телефонии

1. CT-1

2. CT-2

3. DECT

4. PHS

5. PACS, PWT, WDCT

1. В 1985 году разработан первый стандарт бесшнуровой телефонии СТ-1 (Cordless Telephony). Он работает в диапазоне частот 825-837 МГц, в котором размещается 10 радиоканалов. В стандарте реализуется метод частотного разделения каналов (FDMA). Количество дуплексных каналов-40. Связь осуществляется c индивидуальной базовой станцией через свой идентификационный код. Сорока каналов было недостаточно для

использования в деловой сфере и вскоре был принят расширенный стандарт СТ-1+ с удвоенным количеством дуплексных каналов-80. Однако, основным недостатком этих стандартов являлась невозможность обеспечения секретности передачи информации.

2. Стандарт СТ-2 работает в диапазоне частот 864,1-868,1 МГц, в котором размещается 40 радиоканалов, каждый с шириной полосы частот 100 кГц. В стандарте реализуется метод многостанционного доступа с частотным разделением каналов (FDMA). Это первый стандарт беспроводной телефонии, в котором реализован дуплекс с временным разделением приема и передачи (TDD). Скорость цифрового потока в радиоканале-72 кбит/с. Стандарт

предполагает применение АДИКМ кодека со скоростью передачи 32 кбит/с, что обеспечивает высокое качество передаваемой речевой информации. Средняя излучаемая мощность составляет 5 мВт (пиковая 10 мВт). В стандарте используется двухуровневое управление мощностью передатчика, что защищает приемник базовой станции от насыщения и косвенно уменьшает уровень интерференции в сети. СТ-2 обеспечивает конфиденциальность переговоров и лучшее, чем в СТ-1 качество приема речевых сообщений.

3. Стандарт DECT (Digital Enhanced Cordless Telecommunications) работает в диапазоне частот 1880-1900 МГц, в котором размещается 10 радиоканалов, каждый с шириной полосы частот 1728 кГц. В стандарте реализуется метод многостанционного доступа с временным разделением каналов (ТDMA) и дуплекс с временным разделением приема и передачи (TDD). TDMA кадр длительностью 10 мс образует 12 речевых каналов. В течение первой

половины кадра (5 мс) осуществляется передача информации от базовой станции к абонентскому терминалу, а в течение второй половины - в обратном направлении. Скорость цифрового потока в радиоканале – 1152 кбит/с. Кодирование речи осуществляется с помощью АДИКМ кодека со скоростью передачи 32 кбит/с. Средняя излучаемая мощность – 10 мВт (пиковая 250 мВт).

4. Стандарт PHS (Personal Handyphone System) работает в диапазоне частот 1895-1918,1 МГц, в котором размещается 40 радиоканалов, разнос между несущими составляет 300 кГц. Диапазон 1895-1906 МГц выделен для офисного применения, а диапазон 1906-1918,1 МГц зарезервирован для использования на сети общего пользования. В стандарте реализуется метод многостанционного доступа с временным разделением каналов (ТDMA) и дуплекс с временным разделением приема и передачи (TDD). TDMA кадр образует 4 речевых канала. Скорость цифрового потока в радиоканале – 384 кбит/с. Стандарт предполагает применение АДИКМ кодека со скоростью передачи 32 кбит/с. Выходная мощность абонентсткой станции до 10 мВт.

5. В США в бесшнуровых офисных системах и беспрововодных АТС используются различные стандарты, такие как PACS (Personal Access Communications System), PWT (Personal Wireless Telecommunications), WDCT (Worldwide Digital Cordless Telephone). Однако, в Европе они практически не используются.

В отличие от стандартов сотовой связи бесшнуровая связь обеспечивает большую плотность трафика, то есть позволяет обслуживать большое число абонентов на ограниченной площади.

В принципе, все упомянутые стандарты с не меньшим успехом используются для организации бесшнурового мобильного и беспроводного фиксированного (WLL) доступов на местной телефонной сети общего пользования.