Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
первая часть вопросов.docx
Скачиваний:
16
Добавлен:
04.03.2016
Размер:
252.46 Кб
Скачать
  1. Работа электростатического поля при перемещении точечного заряда.

Однородное электростатическое поле: в каждой точке поля.

следовательно

Т.к. если вектор перемещения перпендикулярен вектору силы (напряженности поля), работа поля равна нулю, то работа электростатического поля по перемещению заряда по любой траектории определяется разностью координат этих точек.

Если обозначить координаты заряда в начальной и последующей точках r1 и r2, то:

Т.е. работа равна разности двух эквивалентных величин, зависящих от характера взаимодействия и взаимного расположения. Но мы знаем, что работа - мера изменения энергии. Можно предположить: W=qEr - потенциальная энергия заряда в данной точке электростатического поля. Зависит от выбора начальной точки отсчета потенциальной энергии.

Тогда: наиболее общий способ расчета работы в электростатическом поле

Т. е. работа при перемещении заряда между двумя точками в электростати­ческом поле

- не зависит от формы траектории, а зависит от положения этих точек.

- равна убыли потенциальной энергии заряда в этом поле;

- работа по замкнутой траектории равна нулю.

15. Связь между потенциалом и напряженностью электростатического поля.

Потенциал является важной характеристикой электрического поля, он определяет всевозможные энергетические характеристики процессов, проходящих в электрическом поле. Кроме того, расчет потенциала поля проще расчета напряженности, хотя бы потому, что является скалярной (а не векторной) величиной. Безусловно, что потенциал и напряженность поля связаны меду собой.

 Пусть в произвольном электростатическом поле точечный заряд q совершил малое перемещение Δr из точки 1 в точку 2

Пренебрегая изменением напряженности поля E на этом участке, работу, совершенную полем можно записать в виде По определению эта величина равна разности потенциалов, взятой с противоположным знаком, деленной на величину заряда, поэтому

Если расстояние между точками 1 и 2 не является малым, то необходимо эти точки соединить произвольной линией и разбить ее на малые участки Δr1, Δr2, Δr3 и просуммировать разности потенциалов между (1) ними

Формула (2) позволяет рассчитать разность потенциалов между произвольными точками, по известным значениям напряженности поля во всех точках.

 Как и следовало ожидать, связь между разностью потенциалов и напряженностью поля аналогична связи между изменением потенциальной энергии и действующей силой. Так, если вдоль некоторой прямой (назовем ее осью X), проекция вектора напряженности на эту ось изменяется по некоторому закону EX(x), то площадь под графиком этой функции между точками с координатами x1 и x2 численно равна разности потенциалов между этими точками, взятой с противоположным знаком.

  1. Эквипотенциальные поверхности:

Эквипотенциальные поверхности — понятие, применимое к любому потенциальному векторному полю, например, к статическому электрическому полю или к ньютоновскому гравитационному полю. Эквипотенциальная поверхность — это поверхность, на которой скалярный потенциал данного потенциального поля принимает постоянное значение (поверхность уровня потенциала). Другое, эквивалентное, определение — поверхность, в любой своей точке ортогональная силовым линиям поля.

Поверхность проводника в электростатике является эквипотенциальной поверхностью. Кроме того, помещение проводника на эквипотенциальную поверхность не вызывает изменения конфигурации электростатического поля. Этот факт используется в методе изображений, который позволяет рассчитывать электростатическое поле для сложных конфигураций.