Скачиваний:
111
Добавлен:
08.01.2014
Размер:
770.56 Кб
Скачать

6.6. Коррозия цементного камня и методы повышения коррозионной стойкости

Цементный камень при эксплуатации может подвергаться агрессивному действию внешней среды: пресных или, наоборот, минирализованных вод, совместному действию воды и низких температур, попеременному увлажнению и высушиванию, термическим ударам и т.д. Эти факторы могут вызвать частичное ослабление структуры материала или даже полное его разрушение. Коррозией цементного камня или бетона называют процесс постепенного разрушения материала в результате физико-химического воздействия окружающей среды. Скорость и интенсивность коррозии зависят от структуры бетона, его исходных свойств и характера агрессивного воздействия среды. Коррозия может быть физическая и химическая. Физические факторы коррозии охватывают температурные и влажностные колебания среды, ведущие к деформативным изменения в камне и к его разрушению. Химические факторы коррозии включают воздействие жидких и газовых сред на бетонное тело.

6.6.1. Физическая коррозия цементного камня

Попеременному замораживанию и оттаиванию в наших климатических условиях подвергаются почти все открытые сооружения. Совместное попеременное воздействие воды и мороза влечёт за собой разрушение бетонных сооружений. При отрицательных температурах вода, находящаяся в порах цементного камня, превращается в кристаллики льда, что сопровождается значительным увеличением объёма (примерно на 9%) по сравнению с объёмом исходной воды. При этом кристаллы льда оказывают растягивающее воздействие на стенки поры, вызывая появление внутренних напряжений, что может в итоге привести к разрушению.

Морозостойкость камня зависит от его структуры и, в первую очередь, от со поровой структуры - суммарной пористости материала, характера пористости, размеров пор, степени взаимосвязанности пор и т.д. Вода начинает переходить в лед в первую очередь в крупных порах и полостях при температуре, близкой к 00С. При дальнейшем понижении температуры лед начинает образовываться и в более мелких порах и воздушные поры, которые играют роль как бы запасных "ёмкостей" - в них во время кристаллизации льда выдавливается вода из сообщающихся с ними капилляров.

Бетонные конструкции и изделия могут эксплуатироваться и при повышенных температурах. Бетон может быть отнесён к огнестойким материалам - он не горюч. Однако длительная работа бетона на рядовом цементе при высоких температурах невозможна, так как основу камня составляют гидратные соединения, а они начинают терять химически связанную воду при температуре выше 150-250°С. В результате Дегидратации происходит существенная и необратимая деструкция материала, и он теряет прочность. Поэтому не рекомендуется применять рядовой цемент для бетонов, которые эксплуатируются при температуре выше 2500С.

Кратковременное действие открытого пламени не снижает прочность материала, так как теплопроводность камня невелика и он не успевает сильно прогреться. Для бетонов более опасными являются термические удары (например, при тушении пожара холодной водой). Вследствие различий коэффициентов термического расширения компонентой бетона происходит разрушение ею структуры, приводящее к палению прочности конструкции.

Жаростойкость бетона может, быть повышена путем добавления к нему 25-30% 01 огнеупорных добавок шамота, кварца, огнеупорной глины и т.д.

6.6.2. Химическая коррозия цементного камня

Процессы химической коррозии можно разделить на три вида:

1) разрушение вследствие растворения и вымывания составных

частей цементного камня, в первую очередь гидроксида кальция в

результате фильтрации пресной воды;

  1. разрушение из-за химических реакции обмена солей, содержащихся в минерализованой воде (например, морской), с гидратными составляющими цементного камня, в результате чего возникают хорошо растворимые соединения, которые и вымываются из материала;

3) разрушение в результате появления трудно растворимых кристаллических новообразований, образующихся при химическом взаимодействии солей, содержащихся в минерализованой воде, с гидратными составляющими цементного камня; причём деструктивные процессы связаны с увеличением объёма этих новых фаз. Эти крупные кристаллы плохо растворимых соединений отлагаются в капиллярах и порах затвердевшего камня и сначала даже уплотняют и упрочняют его. Однако в дальнейшем их накопление приводит к появлению внутренних напряжений, вызывающих образование трещин и, в пределе, разрушение материала.

По химической природе выделяют следующие виды коррозии:

  • коррозия выщелачивания, связанная с физическим растворением свободной извести и её вымыванием;

  • общекислотная коррозия, вызываемая действием любых кислот;

  • углекислая коррозия, вызываемая агрессивным действием углекислоты;

• сульфатная коррозия, вызываемая действием на бетон сульфатных анионов;

•магнезиальная коррозия: собственно магнезиальная, вызываемая действием ионов Mg+2, и магнезиально-гипсовая, происходящая при совместном действии ионов Mg+2 и SO4-2.

Коррозия выщелачивания. Са(ОН)2 является наиболее растворимой в воде частью затвердевшего цементного камня. Его растворимость в дистиллированной воде при обычных температурах составляет 1,3 г/л. Если вода неподвижна, то растворение извести после достижения концентрации насыщения прекращается, и коррозия не развивается. Однако в проточной мягкой воде, которая как бы фильтруется через слой бетона, этот процесс идёт непрерывно, и известь вымывается из бетона. Но и после полного удаления из камня извести деструктивный процесс не останавливается, так как вслед за известью начинают разлагаться гидроалюминаты кальция. Кроме того, могут также начаться процессы перекристаллизации гидросиликатов, что также ведёт к разрушению. Чем больше напор воды, чем выше водопроницаемость бетона и меньше толщина слоя бетона, через который фильтруется вода, тем быстрее разрушается бетон.

Общекислотная коррозия. Практически все составляющие затвердевшего цементного камня являются кислоторастворимыми соединениями, поэтому бетон быстро разрушается под действием вод, содержащих минеральные кислоты или даже относительно слабые органические кислоты. Под действием агрессивной кислой среды происходят необратимые обменные реакции с минералами цементного камня, ведущие к образованию хорошо растворимых солей, которые легко вымываются из тела камня. Чем ниже рН среды, тем быстрее развивается коррозия.

Углекислая коррозия происходит в результате действия углекислоты, содержащейся в природных водах. Сначала гидроксид кальция с углекислотой образует нерастворимый углекислый кальций:

Са(ОН)2 + СО2 → СаСОз +Н2О.

Но при избытке углекислоты СаСО3 реагирует с ней с образованием бикарбоната: СаСОз + СО2 + Н2О → Са(НСОз)2, который является хорошо растворимым соединением и относительно легко вымывается из камня.

Сульфатная коррозия бывает трёх видов.

При сульфоалюминатной коррозии содержащиеся в воде щелочные сульфаты взаимодействуют с гидроксидом кальция цементного камня:

Са(ОН)2 + Na2SO4 + 2 Н2О → CaSO42О +2 NaOH

Образовавшийся сульфат кальция, а также имеющийся в воде гипс взаимодействуют с трёхкальциевым алюминатом с образованием эттрингита:

С3А + 3[CaSO4 ·2Н2О] + 19Н2О → 3CaO·Al2O3·3CaS04·31H20

В результате роста в порах камня крупных игл гидросульфоалюмината кальция, сопровождаемого увеличением объёма твёрдой фазы в 2,86 раз, в материале развиваются большие внутренние растягивающие напряжения, что вызывает трещинообразование и разрушение цементного камня.

При других видах сульфатной коррозии -сульфоалюминатногипсовой и гипсовой - концентрация сульфатного иона превышает 1000 мг/л. При этом наряду с эттрингитом образуются значительные количества двуводного гипса. При его кристаллизации объём твёрдой фазы увеличивается в 2,24 раза, что является причиной появления в камне дополнительных напряжений. При очень высокой концентрации сульфатного иона имеет место только гипсовая коррозия, так как в конкурирующих процессах образования ларингита и гипса второй подавляет первый.

При магнезиальной коррозии происходит взаимодействие гидроксида кальция с растворами, содержащими хлористый магний:

Са(ОН)2+ MgС12 → СаС12 + Mg(OH)2

Хлористый кальций - хорошо растворимое соединение, а гидроксид магния плохо растворим в воде, и выпадает в виде рыхлого осадка. В результате происходит разрушение структуры цементного камня.

Наиболее опасна магнезиально-гипсовая коррозия, в основе которой лежит следующая химическая реакция:

Са(ОН)2+ Mg SО4+2Н2О→CaSО4·2H2O+2Mg(OH)2

Здесь образуется гипс, вызывающий гипсовую коррозию (или при более низких концентрациях сульфат-иона – сульфоалюминатногипсовую), и одновременно появляются рыхлые аморфные массы гилроксида магния. Если свободной извести уже не имеется в составе камня, то начинается разрушение гидроалюминатов и гидросиликатов кальция по схеме:

ЗСаО·Al2О3·6H2O+3MgSO4+6H2O →3(CaSO4·2H2O)+2Al(OH)3+3Mg(OH)2

Агрессивной средой может быть не только жидкость, но и газы, особенно кислые.

Нередко химической коррозии сопутствуют вредные физические воздействия - попеременное замораживание и оттаивание, попеременное Увлажнение и высыхание бетона, кристаллизация солей при капиллярном подсосе минерализованой воды и при последующем её испарении.

Способов борьбы с коррозией цементного камня несколько. Кардинальным, но одновременно самым дорогим способом является гидроизоляция бетонных сооружений, исключающая всякую возможность проникновения воды или растворов вглубь бетонного тела, что исключает все разрушительные процессы.

Очевидно, что коррозионная устойчивость цементного камня тесно связана с его водонепроницаемостью - чем плотнее бетон, чем меньшей пористостью он обладает, тем меньше возможность у агрессивной среды проникнуть вглубь бетонного слоя. Поэтому одним из общих способов повышения коррозионной стойкости является изготовление плотного водонепроницаемого бетона за счёт оптимизации его состава и тщательной укладки бетонной смеси.

Стойкость цементного камня в пресных водах можно повысить, Регулируя его минералогический состав. Для этого снижают содержание в клинкере алита как основного источника Са(ОН)2, выделяющегося при его гидратации. Для повышения стойкости цемента в сульфатных водах, кроме того, целесообразно снизить содержание С3А, вступающего в реакцию с гипсом.

Коррозионная устойчивость бетонов и растворов повышается при искусственном или естественном создании на поверхности корки, состоящей из карбоната кальция, СаСО3 возникает при взаимодействии свободной извести с углекислотой воздуха в присутствии воды. Углекислый кальций вследствие малой растворимости не выщелачивается пресной водой и не взаимодействует с сульфатами. Однако эта защитная корка имеет небольшую толщину (не более 5-10 мм) и легко разрушается при механическом воздействии.

Более совершенным, чем карбонизация, является другой химический способ повышения водостойкости цементного камня - пуццоланизация, заключающаяся в связывании Са(ОН)2 активным кремнезёмом, содержащимся в кислых активных минеральных добавках, называемых также пуццоланами.

хСа(ОН)2 + SiO2 + уН2О→xCaO·SiO2·mH2O

Образующиеся при этом гидросиликаты серии CSH(B) являются очень плохо растворимыми соединениями и не вступают в реакцию с сульфатами. По составу они очень близки к гидросиликатам цементного камня, и их образование дополнительно упрочняет и уплотняет камень. Особенно важно, что при пуццоланизации связывание извести происходит не только с поверхности, но и по всему объёму твердеющего камня. Это не только технически самый совершенный и простой способ, но и наиболее экономически оправданный, приводящий одновременно и к уплотнению камня, и к связыванию коррозионно-опасных фаз. Однако пуццоланизация эффективна при действии только пресных и сульфатных вод. При работе бетона в кислых, углекислых и магнезиальных средах химические методы борьбы с коррозией малоэффективны. В большей степени необходимо использовать способы, приводящие к снижению пористости материала и повышению его водонепроницаемости.