Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
общий.docx
Скачиваний:
245
Добавлен:
10.03.2016
Размер:
1.17 Mб
Скачать

1) Азотистое основание - пиримидиновое или пуриновое

Пиримидиновые основания – производные пиримидина, входящие в состав нуклеиновых кислот: урацил, тимин, цитозин.

Для оснований, содержащих группу –ОН, характерно подвижное равновесие структурных изомеров, обусловленное переносом протона от кислорода к азоту и наоборот:

Пуриновые основания — производные пурина, входящие в состав нуклеиновых кислот: аденин, гуанин.

Гуанин существует в виде двух структурных изомеров:

2) Моносахарид

Рибоза и 2-дезоксирибоза относятся к моносахаридам, содержащим пять углеродных атомов. В состав нуклеиновых кислот они входят в циклических β-формах:

3) Остаток фосфорной кислоты

ДНК и РНК

В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или 2-дезоксирибоза, различают

·         рибонуклеиновые кислоты (РНК) и

·         дезоксирибонуклеиновые кислоты (ДНК)

В главную (сахарофосфатную) цепь РНК входят остатки рибозы, а в ДНК – 2-дезоксирибозы. Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин и тимин. Состав РНК отличается тем, что вместо тимина присутствует урацил.

Молекулярная масса ДНК достигает десятков миллионов а.е.м. Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру.

·         Первичная структура нуклеиновых кислот – это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.

Например:...– А – Г – Ц –...

·         Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей.

Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение).Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием.

 

Пиримидиновое основание комплементарно пуриновому основанию:

Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,

·         ТИМИН (Т) комплементарен АДЕНИНУ (А),

·         ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:

·         молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи.

молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.

Вторичная структура РНК

В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).

Основная роль РНК – непосредственное участие в биосинтезе белка.

Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул:

·         информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка;

·         транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа "узнают" по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка;

·         рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.

  1. Нуклеозидмоно- и полифосфаты. АМФ, АДФ, АТФ. Их роль в биохимических процессах.

Нуклеозидполифосфаты. Во всех тканях организмавсвободном состояниисодержатся moho-, ди- итрифосфаты нуклеозидов. Особенношироко известныаденинсодержащие нуклеотиды — аденозин-5 -фосфат (АМР), аденозин-5 -дифосфат (ADP) и аде-нозин-5 -трифосфат (АТР) (дляэтих соединений, наряду с приведеннымисокращенными обозначениямилатинскими буквами, вотечественной литературеиспользуют сокращениясоответствующихрусских названий— АМФ, АДФ, АТФ). В рядебиохимических реакцийучаствуют такие нуклеотиды, как гуанозинтрифос-ват (GTP),уридинтрифосфат(UTP), цитидинтрифосфат (СТР). Их дифосфатные формы обозначаются соответственно GDP, UDP н СОР. Нуклеозйддифосфаты и нуклеозидтрифосфаты часто объединяют термином нуклеозидполифосфаты. Всефосфорилированные нуклеозидывключаются вгруппу нуклеотидов,точнее,мононуклеотидов.      Значение мононуклеотидов исключительно велико. Во-первых, мононуклеотиды, особенно нуклеозидполифосфаты, являютсякоэнзи-мами многихбиохимических реакцийони участвуют вбиосинтезе белков, углеводов, жиров идругих веществ. Большая роль их связана с наличиемзапаса энергии, аккумулированной в их полифосфатных связях. Известно также, что покрайней меренекоторые нуклеозидполифосфаты в ничтожных концентрацияхоказывают действиенасложные функции, например деятельность сердца. Во-вторых, мононуклеотиды являютсяструктурными компонентами нуклеиновых кислот—высокомолекулярных соединений, определяющихсинтез белковипередачу наследственныхпризнаков (они изучаются в биохимии)

АМФ Аденозинмонофосфат Аденозиндифосфат (АДФ)Аденозинтрифосфа́т (сокр. АТФ, англ. АТР)

играют важнейшую роль в обмене веществ и энергий, т. к. присоединение фосфатных групп к АМФ сопровождается аккумуляцией энергии (АДФ, АТФ - макроэргические соединения), а их отщепление - выделением энергии, используемой для различных процессов жизнедеятельности (см.Биоэнергетика). В клетках постоянно происходят взаимопревращения АТФ, АДФ и АМФ.

12. Протонная теория кислот и оснований И. Бренстеда и Т. Лоури.

Согласно теории Бренстеда–Лоури,кислоты представляют собой вещества, способные отдавать протон (доноры протона), а основания – вещества, присоединяющие протон (акцепторы протона). Такой подход известен как протонная теория кислот и оснований (протолитическая теория).

В общем виде кислотно-основноевзаимодействие описывается уравнением:

+ BH+

A - H + B

A

кислота основание сопряженное сопряженная основание кислота

По Льюису, кислотные и основные свойства органических соединений оцениваются по способности принимать или предоставлять электронную пару с последующим образованием связи. Атом, принимающий электронную пару, является акцептором электронов, а соединение, содержащее такой атом, следует отнести к кислотам. Атом, предоставляющий электронную пару, является донором электронов, а соединение, содержащее такой атом, – основанием.

Кислоты Льюиса – акцепторы пары электронов; основания Льюиса – доноры пары электронов.

Кислота

 

Основание

Продукт реакции

Льюиса

 

Льюиса

 

 

AlCl3

+

Cl–

AlCl4–

FeBr3

+

R-Br:

R – Br+-Fe–Br3

13.Электронная теория Льюиса. «Жесткие» и «мягкие» кислоты и основания.

Кислота – частица с незаполненной внешней электронной оболочкой, способная принимать пару электронов (кислота = акцептор электронов).

Основание – частицы со свободной парой электронов, которую можно отдать для образования химической связи (основание = донор электронов).

К кислотам по Льюису относятся:молекулы, образованные атомами с незаполненной восьмиэлектронной оболочкой (BF3, SO3); катионы-комплексообразователи (Fe3+, Co2+, Ag+, др.);галогениды с ненасыщенными связями (TiCl4, SnCl4);молекулы с поляризованными двойными связями (CO2, SO2) и др.

К основаниям по Льюису относят:молекулы, содержащие свободные электронные пары (NH3,H2O);анионы (Сl–, F–);органические соединения с двойными и тройными связями (ацетонСН3СОСН3);ароматические соединения (анилин С6Н5NH2, фенол С6Н5ОН).Протон H+ в теории Льюиса является кислотой, (акцептор электронов), гидроксид ион OH– – основание (донор электронов): НО–(↑↓) + Н+ ↔ НО(↑↓)Н.

Взаимодействие между кислотой и основанием заключается в образовании химической донорно-акцепторной связи между реагирующими частицами.Реакция между кислотой и основанием в общем виде: B(↑↓)основание + Aкислота  D(↑↓)A.

Кислоты и основания Льюиса.

Согласно теории Льюиса, кислотно-основные свойства соединений определяются их способностью принимать или отдавать пару электронов с образованием новой связи.

Кислоты Льюиса – акцепторы пары электронов, основания Льюиса – доноры пары электронов.

Кислотами Льюиса могут быть молекулы, атомы или катионы, обладающие вакантной орбиталью и способные принимать пару электронов с образованием ковалентной связи. К кислотам Льюиса относятся галогениды элементов II и III групп периодической системы, галогениды других металлов, имеющих вакантные орбитали, протон. Кислоты Льюиса в реакциях участвуют в качестве электрофильных реагентов.

Основаниями Льюиса являются молекулы, атомы или анионы, имеющие неподеленную пару электронов, которую они предоставляют для образования связи с вакантной орбиталью. К основаниям Льюиса относятся спирты, простые эфиры, амины, тиоспирты, тиоэфиры, а также соединения, имеющие p-связи. В реакциях основания Льюиса проявляют себя как нуклеофильные частицы.

Развитие теории Льюиса привело к созданию принципа жестких и мягких кислот и оснований (принцип ЖМКО или принцип Пирсона). Согласно принципа Пирсона, кислоты и основания подразделяются на жесткие и мягкие.

Жесткие кислоты – это кислоты Льюиса, донорные атомы которых малы по размеру, обладают большим положительным зарядом, большой электроотрицательностью и низкой поляризуемостью. К ним относятся: протон, ионы металлов (К+, Na+, Mg2+, Ca2+, Al3+), AlCl3 и др.

Мягкие кислоты - – это кислоты Льюиса, донорные атомы которых имеют большие размеры, большую поляризуемость, обладают малым положительным зарядом и низкой электроотрицательностью. К ним относятся: ионы металлов (Ag+, Cu+), галогены (Br2, I2), катионы Br+, I+ и др.

Жесткие основания – основания Льюиса, донорные атомы которых обладают высокой электроотрицательностью, низкой поляризуемостью, имеют малый радиус атома. К ним относятся: Н2О, ОН-, F-, Cl-, NO3-, ROH, NH3, RCOO- и др.

Мягкие основания - основания Льюиса, донорные атомы которых обладают высокой поляризуемостью, низкой электроотрицательностью, имеют большой радиус атома. К ним относятся: Н-, I-, C2H4, C6H6, RS- и др.

Суть принципа ЖМКО состоит в том, что жесткие кислоты реагируют с жесткими основаниями, мягкие кислоты – с мягкими основаниями

14. Состав, строение и виды изомерии у этиленовых углеводородов. Физические свойства. Реакции полимеризации; механизмы реакции полимеризации. Окисление кислородсодержащими окислителями и биологическое окисление.

Состав, строение и виды изомерии у этиленовых углеводородов

Алкены, или олефины, этиленовые — непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь. (Слайд 3) Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными. Алкены образуют гомологический ряд с общей формулой CnH2n.

Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С2Н4. Строение его молекулы можно выразить такими формулами:

       H   H               H   H

         |     |                 :     :

       C==C               C::C

         |    |                 :     :

       H   H               H   H

По названию первого представителя этого ряда такие углеводороды называют этиленовыми.

В алкенах атомы углерода находятся во втором валентном состоянии (sр2-гибридизация). (Слайд 4) В этом случае между углеродными атомами возникает двойная связь, состоящая из одной s- и одной p-связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль.Все валентные углы НСН близки к 120º.

Для алкенов характерны два вида изомерии: структурная и пространственная. (Слайд 5)

Виды структурной изомерии:

  • изомерия углеродного скелета

                                                           ,

  • изомерия положения двойной связи

                                                               ,

  • межклассовая изомерия

                                                       .

Геометрическая изомерия — один из видов пространственной изомерии. Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную — транс-изомерами:

                               .

Физические свойства По физическим свойствам этиленовые углеводороды близки к алканам. При нормальных условиях углеводороды C2-C4 - газы, C5-C17 - жидкости, высшие представители - твердые вещества. Температура их плавления и кипения, а также плотность увеличиваются с ростом молекулярной массы. Все олефины легче воды, плохо растворимы в ней, однако растворимы в органических растворителях.

Реакции полимеризации; механизмы реакции полимеризации.

Одной из наиболее важных в практическом отношении реакций непредельных соединений (или олефинов) является полимеризация. Реакцией полимеризации называется процесс образования высокомолекулярного соединения (полимера) путем соединения друг с другом молекул исходного низкомолекулярного соединения (мономера). При полимеризации двойные связи в молекулах исходного непредельного соединения "раскрываются", и за счет образующихся свободных валентностей эти молекулы соединяются друг с другом.

В зависимости от механизма реакции полимеризация бывает двух видов: 1) радикальная, или инициированная и 2) ионная, или каталитическая.”

 

“Радикальная полимеризация вызывается (инициируется) веществами, способными в условиях проведения реакции распадаться на свободные радикалы - например, пероксидами, а также действием тепла и света. Рассмотрим механизм радикальной полимеризации.

CH2=CH2  ––R˙  R–CH2−CH2 ––C2H4  R−CH2−CH2−CH2−CH2

На начальной стадии радикал-инициатор атакует молекулу этилена, вызывая при этом гомолитическое расщепление двойной связи, присоединяется к одному из атомов углерода и образует новый радикал. Образующийся радикал атакует далее следующую молекулу этилена и по указанному пути приводит к новому радикалу, вызывающему дальнейшие аналогичные превращения исходного соединения. Как видно, растущая частица полимера вплоть до момента стабилизации представляет собой свободный радикал. Радикал-инициатор входит в состав молекулы полимера, образуя его конечную группу. Элементная ячейка полиэтилена представляется следующим образом:

Обрыв цепи происходит либо при столкновении с молекулой регулятора роста цепи (им может быть специально добавленное вещество, легко отдающее атом водорода или галогена), либо путем взаимного насыщения свободных валентностей двух растущих полимерных цепей с образованием одной полимерной молекулы.”

Ионная или каталитическая полимеризация

”Ионная полимеризация происходит благодаря образованию из молекул мономера реакцинноспособных ионов. Именно от названия растущей частицы полимера в процессе реакции происходят названия полимеризации - катионная и анионная.

Ионная полимеризация (катионная)

Катализаторами катионной полимеризации являются кислоты, хлориды алюминия, бора и т.д. Катализатор обычно регенерируется и не входит в состав полимера. Механизм катионной полимеризации этилена в присутствии кислоты как катализатора можно представить следующим образом.

CH2=CH2  ––H+  CH3−CH2+  ––C2H4  CH3−CH2−CH2−C+H2  и  т.д.

Протон атакует молекулу этилена, вызывая разрыв двойной связи, присоединяется к одному из атомов углерода и образует карбониевый катион или карбкатион. Представленный тип распада ковалентной связи называется гетеролитическим расщеплением ( с греческого heteros - иной, разный). Образующийся карбкатион атакует далее следующую молекулу этилена и аналогичным образом приводит к новому карбкатиону, вызывающему дальнейшие превращения исходного соединения. Как видно, растущей частицей полимера является карбкатион. Элементная ячейка полиэтилена представляется следующим образом:

Обрыв цепи может произойти вследствие захвата растущим катионом соответствующего аниона или с потерей протона и образованием конечной двойной связи.

Ионная полимеризация (анионная)

Катализаторами анионной полимеризации являются некоторые металлорганические соединения, амиды щелочных металлов и т.д. Механизм анионной полимеризации этилена под влиянием металлалкилов представляется следующим образом.

CH2=CH2  ––R–M   [R−CH2−CH2]-M+  ––C2H4  [R−CH2−CH2−CH2−CH2]-M+ и  т.д.

Металлалкил атакует молекулу этилена и под ее воздействием осуществляется диссоциация металлалкила на катион металла и алкил-анион. Образующийся алкил-анион, вызывая гетеролитическое расщепление - связи в молекуле этилена, присоединяется к одному из атомов углерода и дает новый карбониевый анион или карбанион, стабилизирующийся катионом металла. Образующийся карбанион атакует следующую молекулу этилена и по указанному пути приводит к новому карбаниону, вызывающему дальнейшие аналогичные превращения исходного соединения в полимерный продукт с заданной степенью полимеризации, т.е. с заданным числом мономерных звеньев. Растущая частица полимера, как видно, представляет собой карбанион. Элементная ячейка полиэтилена представляется следующим образом: ( CH2–CH2 ) ."

Окисление кислородсодержащими окислителями и биологическое окисление

Окисление кислородсодержащими окислителями и биологическое окисление. Алкены, в отличие от алка­ нов, легче подвергаются действию различных окислителей. В за­ висимости от условий образуются разные продукты. В жестких

условиях окисление кислородом происходит по свободноради­ кальному механизму при значительной концентрации радика­ лов, в результате образуются СОи Н2О:

СН2= С Н 2 + 302 — ► 2С02 + 2Н20

В более мягких условиях окисление идет только по двойной свя­ зи. Окисление этена разбавленным раствором КМп0в ней­

тральной или слабощелочной среде приводит к образованию двух­ атомного спирта - этиленгликоля (реакция Вагнера, 1888):

ЗСН2==СН2 + 2КМп04 — ► ЗСН2— СН2 + 2Mn02 + 2К0Н

ОН ОН

В результате этой реакции раствор КМп0обесцвечивается,

поэтому она используется как качественная реакция на нали­ чие двойной связи в исследуемом веществе.

При действии более сильных окислителей в жестких усло­ виях (кислотный раствор КМп0или К2О2О7, а также озон О3)

происходит окислительное расщепление молекулы алкена по двой­ ной связи с образованием соответствующих кислот:

CHCHCH=ck2

-ИЯ*'СНСНСООН + С02

+ H0J

бутеи-1

 

4,1

*у ......^

прошшовая кислота угольная кислота

-1-1

Г01 +3

 

RCH=CHR

RCOOH + R COOH

 

При мягком окислении этилена кислородом в присутствии катализатора происходит образование оксида этилена. Это со­ единение содержит напряженный трехчленный цикл и поэтому, подобно циклопропану, легко вступает в реакции присоедине­ ния полярных реагентов Н2О, NHg, НС1:

-2

-2

Оо

-1

^ '►

Н О С Н 2С Н2О Н

этиленгликоль

-1

HOCH2CH2NH2

 

с н 2= с к 2

 

Н2с— СН2

2-аминоэтанол

 

 

 

о

^ 2 * -

Н О С Н 2С Н2С1

2-хлорэтаяол

Биологическое ферментативное окисление соединений с двойной межуглеродной связью довольно часто идет через ста­ дию ферментного окисного присоединения с образованием неус­ тойчивого оксида, который очень легко присоединяет воду или амины, трансформируясь в более устойчивые метаболиты:

 

 

НоО

0

о

 

 

фермент^ R H C -CH R '

RCH=CHR-

RHC— CHR'

 

ОН он

 

О

NHoR

о

0

 

-----2--—

RHC— CHR'

 

 

фермент

|

|

 

 

 

RHN

ОН

Существует еще один путь ферментативного окисления ал­ кенов. Вначале идет ферментативное присоединение воды с по­ следующим ферментативным дегидрированием (окислением) по­ лученного продукта с образованием карбонилсодержащих мета­ болитов:

RCH=CHR'

RCHa-CHR'

r CH2- C - R ’ + 2H+

 

ОН

о

Этот путь имеет место при р-окислениижирных кислот в орга­ низме (разд.19.4.2).

Наряду с ферментативным окислением алкены подвергают­ ся свободнорадикальному окислению. Окисление идет по угле­ родному атому, находящемуся рядом с двойной связью, по­ скольку при этом образуется энергетически выгодный аллиль­ ный радикал. Свободный аллильный радикал под действием

кислорода и воды легко превращается в гидропероксид и сво­ бодный радикал НО-:

 

00*

R— СН—CH=CHR'

R— СН—CH=CHR'-М* .

аллильный радикал

 

ООН

I

— ► R— СН—CH=CHR'+ НО*

гидропероксид

Дальнейший путь окисления называют ав­ тоокислением, и он лежит в основе пероксидного окисления

липидов, содержащих ненасыщенные жирные кислоты, с обра­ зованием из них карбоновых кислот с более короткой углеводо­ родной цепью (разд. 20.1). Автоокисление часто бывает причи­ ной порчи пищевых продуктов при хранении. За счет авто­ окисления на воздухе высыхают масляные краски, так как под действием кислорода происходит радикальная полимеризация их ненасыщенной масляной основы.

15.Химические свойства алкенов: реакции присоединения:

Галогенирование- Молекулы галогенов в среднем неполярны, однако возможны временные флуктуации, которые приводят к появлению электрофильности у такой молекулы: —Br-Br+Br—Br и становится возможной реакция, механизм которой приведен ниже:

В результате реакции исчезает двойная связь и образуется дигалоген алкан. Реакция галогенирования (обычно бромирования) используется как качественная на двойную связь, поскольку в ходе реакции исчезает бурая окраска брома.

Гидрирование- Взаимодействие алкенов с водородом происходит в присутствии металлических катализаторов (Ni, Pd, Pt и др.) при нагревании: СН3—СН2—СН3СН3—СН=СН2+Н2

Гидрогалогенирование-

Гидратация-

16. Особенности строения и свойств сопряженных алкадиенов. Реакции присоединения, полимеризации.

Свойства сопряженных алкадиенов

Наибольшее практическое значение имеют дивинил или бутадиен-1,3 (легко сжижающийся газ, т.кип = – 4,5° ) и изопрен или  2-метилбутадиен-1,3 (жидкость с т.кип =34° С).

По химическим свойствам диеновые углеводороды подобны алкенам. Они легко окисляются и вступают в реакции присоединения. Однако сопряженные диены отличаются некоторыми особенностями, которые обусловлены делокализацией (рассредоточением) p -электронов.

Молекула бутадиена-1,3 СН2=СН-СН=СН2 содержит четыре атома углерода в sp2-гибридизованном состоянии и имеет плоское строение.

p-Электроны двойных связей образуют единое p -электронное облако (сопряженную систему) и делокализованы между всеми атомами углерода.

Порядок связей (число общих электронных пар) между атомами углерода имеет промежуточное значение между 1 и 2, т.е. нет чисто одинарной и чисто двойных связей. Строение бутадиена более точно отражает формула с делокализованными связями.

Аналогично построены молекулы изопрена:

Образование единого p -электронного облака, охватывающего 4 атома углерода: 

приводит к возможности присоединения реагента по концам этой системы, т.е. к атомам С1 и С4. Поэтому дивинил и изопрен наряду с присоединением 1 моля реагента по одной из двойных связей (1,2- или 3,4-) вступают в реакции 1,4-присоединения. Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции (с повышением температуры обычно увеличивается вероятность 1,4-присоединения).

Галогенирование

1,4-присоединение:

1,2-присоединение:

 Сопряженные диены играют очень важную роль при получении высокомолекулярных соединений, поскольку из 2-метилбутадиеновых (изопреновых) звеньев построены молекулы натурального каучука.

17.Биологическая роль непредельных соединений.

Липиды – органические жироподобные соединения, не растворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе). Они обнаружены в клетках всех живых организмов. Содержание липидов в разных клетках сильно варьирует: от 2-3 до 50-90% (в клетках семян растений и жировой ткани животных). В химическом отношении большинство липидов – это сложные эфиры высших карбоновых кислот и ряда спиртов.

В природе наиболее распространены липиды следующих классов: нейтральные жиры, воски, фосфолипиды, стеролы.

Нейтральные жиры (триацилглицеролы). Каждая молекула жира образована молекулой трехатомного спирта глицерола и тремя карбоновыми кислотами, каждая из которых содержит четное число атомов углерода.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом у предельных (насыщенных) кислот простыми, у непредельных (ненасыщенных) кислот - двойными связями. Среди предельных высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая и арахиновая; среди непредельных: олеиновая, линолевая, линоленовая.

Степень насыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяют физические свойства того или иного жира. У жиров с короткими и непредельными цепями низкая температура плавления: при комнатной температуре они имеют жидкую (масла) либо мазеподобную (жиры) консистенцию. Жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре – твердые вещества.

Воски – сложные эфиры одноатомных (с одной спиртовой группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот. У животных воски входят в состав липидных фракций мозга, лимфатических узлов, селезенки, желчных путей. Воски секретируются кожными железами: покрывая кожу и ее производные (волосы, шерсть, перья) воски смягчают их и предохраняют от действия воды. Пчелы производят воск и используют его в строительстве сот. У растений воска образуются в клетках эпидермиса и покрывают листья растений (хвойные, капуста), плоды, защищая от избыточного испарения воды. Восковой налет хорошо заметен на стеблях и листьях ржи, листьях капусты, ириса и других растений. Он легко стирается. У тропических растений слой воска на листьях может достигать толщины в несколько миллиметров.

Фосфолипиды – липиды, у которых одна из крайних цепей высших карбоновых кислот замещена на фосфатную группу, к которой могут присоединяться другие молекулы. Это амфифильные соединения, имеющие полярные гидрофильные головки и неполярные гидрофобные хвосты. Такая двойственная природа фосфолипидов обусловливает их ключевую роль в образовании биологических мембран.

К фосфолипидам относятся и сфинголипиды, молекулы которых построены на основе спирта сфингозина; они тоже содержат фосфатную группу.

Стеролы – наиболее распространенная в природе группа стероидов – веществ, построенных на основе спирта холестерола. Они очень плохо растворимы в воде и не содержат высших карбоновых кислот. Это желчные кислоты, холестерол, половые гормоны, витамин D и др. К стеролам близки терпены (гиббереллины – ростовые вещества растений; фитол – входит в состав хлорофилла; каратиноиды, ментол, камфора – эфирные масла растений).

Функции липидов:

1) строительная:

а) образуют бимолекулярный слой биологических мембран (фосфолипиды, стеролы, гликолипиды);

б) липиды участвуют в образовании миелиновых оболочек нервных волокон, где выполняют функции изолятора при передаче нервных импульсов;

2) энергетическая:

а) при окислении 1 г жира высвобождается 38,9 кДж;

б) в форме липидов хранится значительная часть энергетических запасов организма (половина потребляемой клетками энергии в состоянии покоя, образуется за счет окисления жиров; высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка);

3) источник метаболической воды: при окислении 100 г жира образуется примерно 105 г воды, которая используется организмами (жир, запасенный в горбу верблюда, позволяет ему обходиться в пустыне без воды 10-12 суток; животные в спячке);

4) защита и теплоизоляция: накопление жира

а) в подкожной жировой клетчатке (у тюленей и китов до 1 м) выполняют теплоизоляционную функцию;

б) вокруг некоторых органов (почка, кишечник), обеспечивает защиту как организма, так и отдельных органов от механических повреждений;

5) смазывающая и водоотталкивающая (см. воски);

6) регуляторная: липоиды служат предшественниками некоторых гормонов (тестостерона, прогестерона, кортизола, альдостерона), витамин Д и желчных кислот, следовательно, участвуют в регуляции обменных процессов.

36 Критерии самопроизвольного протекания поверхностных явлений Самопроизвольные поверхностные явления происходят вследствие уменьшения поверхностной энергии системы. Они могут быть обусловлены уменьшением общей поверхности системы либо уменьшением поверхностного натяжения на границе раздела фаз.

К поверхностным явлениям, связанным с уменьшением общей поверхности, относят: 1) капиллярные явления. в частности приобретение каплями и газовыми пузырьками сферич. формы, при которой поверхность капли минимальна. 2) Спекание мелких твердых частиц в порошках при достаточно высоких температурах. 3) Собирательная рекристаллизация - укрупнение зерен поликристаллического материала при повышении температуры. 4) Изотермическая перегонка - увеличение объема крупных капель за счет уменьшения мелких.

При этом вследствие повышенного давления паров жидкости с более высокой кривизной поверхности происходит испарение мелких капель и последующая их конденсация на более крупных каплях. Для жидкости, находящейся на твердой подложке, существенная роль в переносе вещества от мелких капель к крупным играет поверхностная диффузия. Изотермическая перегонка твердых частиц может происходить через жидкую фазу вследствие повышенной растворимости более мелких частиц

Коалесценция - слияние капель жидкости или пузырьков газа.

Коагуляция - слипание частиц в дисперсных системах.

Сорбция- это процессы поглощения газов или растворенных веществ твердыми материалами или жидкостями. 37 1)Адсорбцией-называют процесс сорбции который идет только на поверхности. Это приводит к увеличению концентрации вещества на границе раздела фаз.

Вещество, на поверхности которого идет адсорбция, называется адсорбентом, а которое адсорбируется -адсорбатом (адсорбтивом). Адсорбцию Г обычно выражают соотношением количества адсорбата X, приходящегося на единицу площади адсорбента S (кмоль/м2)

Г = X/S

Если адсорбентом является твердое пористое тело, общую поверхность которого определить невозможно, то величину адсорбции Г относят к единице массы адсорбента m(кмоль/кг)

Г = X/m

Между адсорбентом и адсорбатом возникают адсорбционные силы. В зависимости от их природы рассматривают два крайних случая: физическую ихимическую адсорбцию.

Физическая адсорбция возникает за счет Ван-дер-Ваальсовых взаимодействий. Она характеризуется

1) Обратимостью, т.е. может протекать обратный процесс - десорбция. Скорость адсорбции с течением времени уменьшается, а скорость десорбции увеличивается, что приводит к адсорбционному равновесию

адсорбция ↔ десорбция

при котором скорости двух противоположных процессов становятся одинаковыми.

2)При повышении температуры величина адсорбции уменьшается, так как увеличивается скорость десорбции.

3)Малой специфичностью.

4)При физической адсорбции могут быть как нелокализованная адсорбция, когда молекулы адсорбата способны передвигаться по поверхности адсорбента, так и локализованная адсорбция.

Химическая адсорбция является химическим процессом, поэтому

-Необратима.

-С повышением температуры увеличивается.

-Специфична. Адсорбция происходит, если возможна химическая реакция.

Молекулы адсорбата связаны с адсорбентом прочными химическими силами и не могут перемещаться по поверхности последнего, поэтому химическая адсорбция - локализованная.

Примером является адсорбция кислорода на алюминии, приводящая к образованию поверхностной оксидной пленки.

Уравнение адсорбции устанавливает функциональную связь величины адсорбции с равновесной концентрацией и температурой Г = f(С, Т), если адсорбция идет из растворов, и равновесным давлением и температурой Г =f(Р, Т) если адсорбируется газ.

При постоянной температуре адсорбированное количество вещества есть функция равновесной концентрации Г = f(С)тили равновесного давления Г =f(Р)т.

Графическая зависимость называется изотермой адсорбции и имеет вид кривой, на которой можно выделить три участка: IиIII- прямолинейные,II- криволинейный.

2) Зако́н Ге́нри — закон, по которому при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором. Закон пригоден лишь для идеальных растворов и невысоких давлений.

C = kp

где:

p — парциальное давление газа над раствором, Па

c — молярная концентрация газа в растворе, моль/л

k — коэффициент (константа) Генри, моль/(Па*л). Коэффициент зависит от природы газа и растворителя, а также от температуры.

3) Закон Сеченова-закон, описывающий количественно снижение растворимости газов в присутствии электролитов.

Одной из причин уменьшения растворимости газа в присутствии электролита явл. гидратация ионов электролитов молекулами растворителя, в результе умень-тся число свобод молекул расторителя, т.е. его растворяющая способность.

Формула: с(Х)+Со(Х)е в степени –КсСэ, где С(Х)-растворимость газа Х в чистом растворителе, Сэ-концентрация электролита, Кс-константа Сеченова, кот зависти от природы газа, электорлита и температуры.