Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзаменационные вопросы по методике с ответами.doc
Скачиваний:
172
Добавлен:
11.03.2016
Размер:
30.95 Mб
Скачать

Сенсорные системы

  1. Определение остроты зрения. Работа 6.1– стр.232

  2. Аккомодационный рефлекс. Значение. Работа 6.2– стр.233

  3. Зрачковый рефлекс Физиологическое значение. Работа 6.9– стр.239

  4. Исследование цветового зрения. Работа 6.5– стр.236

  5. Определение световой и темновой адаптации зрения (адаптометрия) учебник

Адаптометрия

Важнейшей зрительной функцией является световая чувствительность, обеспечиваемая палочками сетчатки.

Световая чувствительность измеряется световыми порогами. Различают порог раздражения, т. е. минимальную световую энергию, с которой начинается восприятие, и порог различения, т. е. восприятие минимальной разницы в освещении. Определение порога различения лежит в основе исследования светоощущения.

Приспособление органа зрения к разным условиям освещения называется адаптацией. Различают адаптацию темновую и световую.

Световая адаптация - это приспособление к высокой освещенности. Сведения об адаптации к свету до настоящего времени недостаточны. Известно, что она короче, нежели адаптация к темноте, в тысячи раз. Ее исследуют крайне редко и по специальным показаниям.

Темновая адаптация определяется: 1) достижением максимума световой чувствительности в течение первых 30-45 мин; 2) световая чувствительность нарастает тем скорее, чем менее до этого глаз был адаптирован к свету; 3) во время темновой адаптации светочувствительность повышается в 8-10 тысяч раз и более; 4) после 45 мин пребывания в темноте световая чувствительность повышается, но незначительно, если обследуемый остается в темноте.

Исследование темновой адаптации производят, как правило, с помощью приборов различной конструкции. Одни из них (адаптометры)предназначены для определения пороговых величин световой чувствительности глаза в абсолютных величинах, другие характеризуют ее косвенно - по времени выявления феномена Пуркинье (описан в 1825 г.). Последний базируется на им же установленной различной спектральной чувствительности глаза в условиях дневного и сумеречного освещения.

В первом случае она максимальна к лучам с  λ 550-560 нм (красным), во втором - с λ 506-510 нм (голубым). Именно по этой причине в сумерках объекты голубого цвета различаются глазом лучше и быстрее, чем точно такие же, но красного цвета.

Состояние темновой адаптации можно определить, используя упомянутый феномен Пуркинье, и с помощью самодельного приспособления в виде картонного прямоугольника (140 х 120 мм) черного цвета, к углам которого приклеены тестовые квадратики (30 х 30 мм) красного, голубого, желтого и зеленого цвета. При сумеречном освещении пациент должен сначала увидеть желтый квадратик, а несколько позже - голубой (они кажутся более светлыми, чем два остальных). Правильность его ответов можно легко контролировать, поворачивая картон то в одну, то в другую сторону, т.е. меняя пространственное положение тестовых квадратиков. О состоянии темновой адаптации судят по времени различения голубого объекта (в норме до 30 с).

Для врачебной экспертизы широко применяют адаптометр, созданный проф. C.B. Кравковым и проф. H.A. Вишневским. Он позволяет ориентировочно определить состояние сумеречного (ночного) зрения при массовых обследованиях за 3—5 мин.

Адаптометр Кравкова-Вишневского представляет собой темную камеру, внутри которой расположена таблица из зеленого, голубого, желтого и красного квадратов, освещаемая светом различной, постепенно усиливающейся яркости. Основной объект наблюдения — голубой квадрат; желтый квадрат служит для контроля.

О светоощущении можно судить по времени, которое нужно обследуемому для того, чтобы он начал различать цветные квадраты таблицы. В начале исследования при адаптации к свету обследуемый не различает цветов и квадраты кажутся ему серыми различной светлости. По мере наступления темновой адаптации первым различается желтый квадрат, затем - голубой. Красный и зеленый квадраты в этих условиях совсем неразличимы.

Время, прошедшее от момента включения ламп до момента, когда обследуемый увидел более светлый квадрат на месте зеленого, отмечается по секундомеру. При нормальном цветовом зрении и нормальной темновой адаптации — это время колеблется между 15-й и 60-й секундами.

Темновую адаптацию можно проверить и без адаптометра, используя таблицу Кравкова—Пуркинье. Кусок картона размером 20x20 см оклеивают черной бумагой. По углам, отступя на 3—4 см от края, наклеивают 4 квадратика размером 3x3 см из голубой, желтой, красной и зеленой бумаги.

Цветные квадраты показывают пациенту в затемненной комнате на расстоянии 40—50 см от глаза. В норме сначала квадраты неразличимы. Через 30—40 с становится различимым контур желтого квадрата, а затем — голубого. Понижение темновой адаптации называется гемералопией. При гемералопии видят лишь один желтый квадрат.

Если установлено понижение сумеречного зрения, темновую адаптацию необходимо проверить на более точных адаптометрах, например на адаптометре Белостоцкого Прибор определяет кривую нарастания световой чувствительности глаза во время длительного (60 мин) пребывания в темноте и исследует раздельно световую чувствительность центра и периферии сетчатой оболочки в короткое (3—4 мин) время, а также определяет чувствительность адаптированного к темноте глаза к ярком свет.

Перед началом исследования темновой адаптации необходимо получить максимальную световую адаптацию Для этого обследуемый в течение 20 мин смотрит на равномерно и ярко освещенный экран Затем пациента помещают в полную темноту (под ширму адаптометра) и определяют световую чувствительность глаз.

Через интервалы 5 мин больному предлагают смотреть на слабо освещенный экран По мере того как световая чувствительность нарастает, восприятие яркости постепенно снижается С помощью диафрагмы можно ДОСТИГНУТЬ постепенного и равномерного уменьшения освещения примерно в 80 млн раз по сравнению с освещением при открытой диафрагме Исследование проводят в течение 1 ч.

Световая чувствительность глаза быстро возрастает в темноте и через 40— 45 мин достигает максимума, возрастая в 50 000—100 000 раз, а иногда и более по сравнению с чувствительностью глаза на свету. Особенно быстро темновая адаптация нарастает в первые 20 мин.

Поскольку нарастание порогов световой чувствительности обладает огромным размахом (световая чувствительность увеличивается до 100 000 раз), удобнее представлять нарастание световой чувствительности в логарифмах чисел, обозначающих световую чувствительность. По оси абсцисс откладывают время пребывания в темноте в минутах, а по оси ординат — пороги световой чувствительности, выраженные в логарифмах.

Световая чувствительность и ход адаптации — исключительно тонкие функции, они зависят от возраста, питания, настроения, различных побочных раздражителей.

Расстройства темновой адаптации могут проявляться в виде повышения порога раздражения, т.е. светочувствительность даже при длительном пребывании в темноте остается пониженной и не достигает нормальной величины, или в виде замедления адаптации, когда светочувствительность нарастает позднее, чем в норме, но постепенно доходит до нормальной или почти нормальной величины.

  1. Определение границ поля зрения (периметрия). Работа 6.3– стр.233

  2. Исследование вестибулоокулярных рефлексов (нистагм, проба кукольных глаз, калорическая проба Работа 6.23– стр.252 +

Благодаря вестибулоокулярным рефлексамподдерживается фиксация взора при движениях головы. Эти рефлексы обеспечиваются прямой связью вестибулярных ядер с ядром отводящего нерва в варолиевом мосту, а также связями вестибулярных ядер с ядрами глазодвигательного и блокового нерва в среднем мозге через медиальный продольный пучок. За счет этих связей при поражении вестибулярной системы практически всегда возникает нистагм.

Благодаря этому рефлексу сохраняется стабильное изображение насетчаткево время быстрых вращательных движений головы. Одновременно с движением головы происходит рефлекторное смещение глаз в противоположном направлении на нужное расстояние.

Когда голова начинает движение в каком-либо направлении (с ускорением), полукружные каналы внутреннего уха стимулируеются. Глазодвигательная система отвечает на эту стимуляцию смещением глаз в противоположную сторону с такой же скоростью. (Это характерное движение глаз называетсянистагмом).

Проба кукольных глаз- один из способов проверкивестибулоокулярных рефлексов. Осуществляют сначала медленный, а затем быстрый поворот головы из стороны в сторону в горизонтальной и вертикальной плоскости. При положительной пробе глаза двигаются в направлении, противоположном повороту головы (рис.1). Такие рефлекторные движения глаз регулируются стволовыми механизмами и зависят от импульсации, поступающей отвестибулярного аппаратаипроприорецепторовшеи. При сохранном сознании они подавляются за счет фиксации взора, обеспечиваемого полушариями головного мозга, и появляются только при подавлении полушарных влияний. Рефлекторные движения глаз по горизонтали регулируютсянейронамиядраотводящего нерва, соединенными с нейронами ядраглазодвигательного нервадругой стороны посредством медиального продольного пучка ( рис. ).

На рис.1. представлена схема нейронных путей вестибулоокулярного рефлекса.

Рис.2. Нейронная сеть вестибулоокулярного рефлекса 

(Глаза, пути ствола мозга и горизонтальные полукружные каналы представлены как вид сверху. Стрелками показан поворот головы влево и относительное смещение эндолимфы вправо)

Вся система внутреннего уха заполнена водным раствором - эндолимфой - и подвешена в полости уха, где она плавает в другом водном растворе - перилимфе.

Рефлекс запускается при угловом ускорении головы; сенсорные рецепторы находятся в полукружных каналах вестибулярного аппарата . Допустим, голова поворачивается налево. В результате эндолимфа смещает купулы в горизонтальных каналах и частота импульсов возрастает в вестибулярных афферентных нервах левого горизонтального канала, а в афферентах правого канала - снижается. 

Афферентные нервы проецируются к медиальному вестибулярному ядру и к верхнему вестибулярному ядру ; усиление активности нейронов вестибулярных ядер левой стороны сопровождается активацией восходящих путей . Эти пути направляют сигналы, во-первых, к левому ядру глазодвигательного нерва (через медиальный продольный пучок ), возбуждая мотонейроны медиальной прямой мышцы глаза, а во-вторых, к правому ядру отводящего нерва , возбуждая мотонейроны латеральной прямой мышцы глаза. 

Ослабление активности в вестибулярных ядрах правой стороны действует противоположным образом на мотонейроны правой медиальной и левой латеральной прямых мышц глаза. Реципрокная иннервация осуществляется и в восходящих вестибулярных путях , обеспечивая торможение мотонейронов мышц-антагонистов.

По мере поворачивания головы положение глаз достигает предела. Тогда глаза совершают саккаду (стереотипное скачкообразное движение глаз) в направлении поворота головы, снова фиксируют зрительную мишень и смещаются в направлении, противоположном движению головы. Саккады настолько быстрые, что зрительные изображения сливаются и передача информации практически не прерывается.

Чередование медленных и быстрых движений глаз, связанное с поворотом головы, называется вестибулярным нистагмом. При такой обычной вестибулярной стимуляции процесс соответствует физиологической норме. 

Вестибулярный нистагм- чередование медленных и быстрых движений глаз, связанное с поворотом головы.

Клиническое тестирование функции лабиринтов обычно проводится вращением больного в кресле Барани(при этом активируются лабиринты обоих ушей) либо промыванием наружного слухового прохода одного уха холодной или теплой водой -калорический тест.Во время вращения в кресле Барани у человека возникает нистагм. Его быстрая фаза направлена в ту же сторону, что и вращение. При остановке наблюдается нистагм в противоположную сторону (поствращательный нистагм); если при этом человек пытается встать, у него кружится голова и он может упасть.

Калорический тест информативнее, поскольку позволяет различать нарушения функции правого и левого лабиринта. Голову сидящего испытуемого отклоняют назад приблизительно на 60 градусов, чтобы горизонтальные каналы занимали строго вертикальное положение.

Если в левое ухо влить теплую воду, уровень эндолимфы в левом полукружном канале поднимется из-за уменьшения ее плотности. В результате реснички на волосковых клетках левого ампулярного гребешка сгибаются к утрикулусу, импульсный разряд афферентов этих клеток усиливается и возникает нистагм с быстрой фазой влево.

Человек воспринимает это как смещение окружающих предметов вправо и может упасть на правую сторону. Когда в левое ухо вливают холодную воду, наблюдается противоположный эффект.

Итак, при вливании в ухо теплой воды нистагм направлен туда, где находится источник термического воздействия, а при охлаждении уха - в противоположную сторону.

  1. Исследование воздушной и костной проводимости звука, слуховые пробы Вебера и Риннэ Работа 6.12– стр.241

  2. Аудиометрия Работа 6.11– стр.239

  3. Методы исследования вкусовой чувствительности (густометрия) Работа 6.16– стр.245

  4. Определение порогов обоняния (ольфактометрия) Работа 6.20– стр.249

  5. Исследование тактильной чувствительности. Пороги различения (эстезиометрия) Работа 6.14– стр.243

  6. Исследование температурной чувствительности (термоэстезиометрия) Работа 6.18– стр.247