Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ.docx
Скачиваний:
56
Добавлен:
16.03.2016
Размер:
79.1 Кб
Скачать
  1. Диэлектрические материалы.

    1. Классификация и общие свойства диэлектриков. Температурные зависимости.

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ.

- вещества, способные поляризоваться в электрическом поле. В них существует внутреннее электрическое поле и равномерное распределение потенциалов.

Носители заряда в диэлектриках:

  1. В газах

  1. Положительные и отрицательные ионы. Причина: ионизация молекул газа.

  2. Электроны в сильных полях.

  1. В жидкостях

  1. Ионы. Причина: диссоциация молекул жидкости.

  2. Коллоидные заряженные частицы в эмульсиях и суспензиях.

  1. В твердых

  1. Ионы.

  2. Дефекты кристаллической решетки.

  3. Электроны или дырки проводимости.

Бывают полярные и неполярные.

Рисунок 50.

Основные электрические свойства диэлектриков:

  1. Поляризация

  2. Электропроводность

  3. Диэлектрические потери

  4. Электрическая прочность

При расчетах на постоянном токе учитывают только сквозной ток.

    1. Поляризация диэлектриков. Виды поляризации.

Поляризация – процесс смещения и упорядочения зарядов в диэлектрике под действием внешнего электрического поля. Численной мерой поляризации является поляризованность диэлектрика – количество электрического момента в единице объема диэлектрика:

(1.2)

(1.2)

где dp - электрический момент элемента диэлектрика;

dV – объем элемента диэлектрика

- напряженность внешнего электрического поля, В/м,

- диэлектрическая постоянная,

- относительная диэлектрическая проницаемость.

Поляризация определяет свойство диэлектриков образовывать электрическую емкость. В то же время поляризация диэлектриков, происходящая с затратами энергии и выделением теплоты, вызывает потери электрической энергии в материалах-изоляторах, особенно на высоких частотах, когда процессы поляризации диэлектрика повторяются большее количество циклов в единицу времени. Поэтому поляризацию описывают параметрами диэлектрика и.

Различают несколько видов поляризации.

2.2.1. Упругая поляризация – совершается в диэлектрике без выделения энергии и рассеяния тепла. Различают электронную и ионную упругие поляризации

Электронная поляризация – упругое смещение и деформация электронных оболочек атомов, приводящая к разделению геометрических центров положительного и отрицательного зарядов в атоме. Для установления требуемся минимальное время – 10-15с, т.е. образуется практически мгновенно. Поляризуемость при электронной поляризации не зависит от температуры, а диэлектрическая проницаемость плавно уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением количества атомов в единице объема (рис. 2.2). Электронная поляризация наблюдается у всех диэлектриков независимо от их химического состава и внутренней структуры.

Ионная поляризация – упругое смещение ионов – узлов кристаллической решетки, характерна для материалов с ионным строением. С повышением температуры усиливается благодаря ослаблению межионных сил. Время установления поляризации 10-13с – больше, чем у электронной поляризации, так как ионы массивнее.

Так как процессы электронной и ионной поляризации происходят практически мгновенно, величина деэлектрической проницаемости материалов с упругой поляризацией постоянна и от частоты не зависит.

2.2.2. Релаксационная (неупругая) поляризация – медленные виды поляризации. Для их осуществления требуется затратить определенную энергию, которая затем выделяется в виде тепла при возвращении диэлектрика в исходное состояние. Различают дипольно-релаксационную, ионно-релаксационную, электронно-релаксационную, резонансную и миграционную виды поляризации.

Дипольно-релаксационная поляризация характерна для веществ с дипольным строением и вызывается переориентацией молекул-диполей в приложенном к диэлектрику внешнем электрическом поле. В зависимости от массы, плотности упаковки и размеров диполей время установления поляризации сставляет 10-10..10-2 с. После снятия поля, вызвавшего поляризацию, они возвращаются в исходное хаотичное состояние под действием теплового движения частиц, при этом поляризованность материала убывает по закону

(1.2)

где - поляризованность диэлектрика в момент снятия внешнего поля, Кл/м2,

- время релаксации (время, за которое количество упорядоченных диполей убывает в е раз), с.

Зависимость дипольной поляризации от температуры изображена на рис. 2.3. Спад графика в области низких температур обусловлен плотной упаковкой ионов и трудностью их переориентации, а в области высоких температур – малым количеством диполей, приходящимся на единицу объема диэлектрика.

Рис. 2.3. Зависимость дипольно-релаксационной поляризации от температуры

Дипольно-релаксационная поляризация наблюдается у всех полярных веществ. У твердых диэлектриков поляризация вызывается не поворотом самой молекулы, а смещением имеющихся в ней полярных радикалов, например, Na+ и Cl- в молекуле поваренной соли.

С увеличением частоты дипольная поляризация и диэлектрическая проницаемость убывают, поэтому полярные диэлектрики являются частотно-зависимыми и не применяются на высоких частотах.

Ионно-релаксационная поляризация наблюдается в материалах с неплотной упаковкой ионов и вызвана физическим перемещением ионов в вакансии кристаллической решетки под действием внешнего электрического поля. После снятия поля поляризация постепенно ослабевает. Наблюдается только для твердых веществ (рис. 3.х), так как в расплавленном состоянии ионы становятся свободными и материал становится проводником с электролитической проводимостью.

Рис. 3.х. Зависимость ионно-релаксационной поляризации

от температуры

Электронно-релаксационная поляризация вызвана перемещением от одного иона к другому (в направлении поля) избыточных (дефектных) электронов и дырок. Характерна для веществ с электронной электропроводностью, имеет центральный максимум в зависимости и уменьшается с ростом частоты.

Резонансная поляризация. Наблюдается в диэлектриках на световых частотах и обусловлена резонансом собственных колебаний (вращения) электронов или ионов и частоты внешнего электромагнитного поля (света). На практике не применяется и практически не влияет на свойства диэлектрика в области частот, используемой электроникой и микроэлектроникой.

Миграционная поляризация – проявляется в твердых телах неоднородной структуры при макроскопических неоднородностях и наличии примесей. Причинами поляризации являются наличие проводящих и полупроводящих включений в реальных технических диэлектриках(бумага, ткань). При миграционной поляризации электроны и ионы перемещаются в пределах проводящих включений, образуя большие поляризованные области. Данная поляризация связана с большими потерями энергии и наблюдается уже на низких частотах, время релаксации таких диэлектриков – минуты и секунды.

В реальных диэлектриках проявляется несколько видов поляризации одновременно, поэтому частотные и температурные зависимости поляризованности , диэлектрической проницаемостии тангенса угла диэлектрических потерьусложняются. По виду поляризации различают четыре группы диэлектриков:

  1. Диэлектрики в основном с электронной поляризацией. Это неполярные и слабополярные вещества в кристаллическом и аморфном состояниях (парафин, полистирол, полиэтилен). Используют в качестве высокочастотных диэлектриков - изоляторов.

  2. Диэлектрики с электронной и дипольно-релаксационной поляризацией. Это полярные органические, полужидкие и твердые материалы (смолы, целлюлоза). Используют в качестве низкочастотных диэлектриков – изоляторов и в низкочастотных конденсаторах.

  3. Твердые неорганические диэлектрики с электронной, ионной и релаксационной поляризацией (слюда, кварц, стекло, керамика, ситаллы). Используются в качестве диэлектриков в высокочастотных конденсаторах и как изоляторы.

  4. Сегнетодиэлектрики, обладающие всеми видами поляризации. Используются как активные (управляемые) диэлектрики.

Благодаря поляризации изменяется электрическое поле внутри диэлектрика. Диэлектрическая проницаемость характеризует ослабление внешнего поля внутренним:

(1.2)

где - внешнее электрическое поле, В/м,

- внутреннее электрическое поле, В/м,

- электрическое смещение, Кл/м2,

- поверхностная плотность связанных зарядовна пластинах конденсатора при наличии диэлектрика, Кл/м2,

- добавочная поверхностная плотность заряда, возникающая благодаря поляризации диэлектрика, Кл/м2

- поверхностная плотность заряда на пластинах воздушного конденсатора, Кл/м2

Для получения необходимых свойств, например, минимума температурного коэффициента емкости ТКЕ, в электрических конденсаторах может применяться сложный диэлектрик, состоящий из смеси простых материалов с разными величинами диэлектрической проницаемости. В случае использования такого диэлектрика его эффективная диэлектрическая проницаемость рассчитывается по формуле Лихтенеккера: для случая хаотического распределения компонентов:

,

где 1 и 2 – объемные концентрации(доли) компонентов.

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ.

- процесс смещения и упорядочения носителей заряда под действием электрического поля

- состояние вещества, при котором элементарный его объем приобретает электрический момент

Причины: внешнее электрическое поле, механическое напряжение, освещенность и другие факторы внешней среды, спонтанная поляризация.

Рисунок 51.

Поляризация – причина появления электрической емкости.

Диэлектрики:

1) линейные – изоляция, кондесы постоянной емкости

2)нелинейные – датчики, кондесы управляемого напряжения

Рисунок 52.

Полярные состоят из полярных молекул (вода). Неполярные – из неполярных, у которых электрический момент = 0 (газы, поваренная соль).

Виды поляризации:

  1. Быстрая поляризация (упругая) – происходит без рассеяния энергии.

  1. Электронная поляризация – смещение электронного облака относительно центра ядра атома. Время возникновения и ликвидации – 10^-14…10^-15 с. Поляризуемость не зависит от температуры, но диэлектрическая проницаемость зависит. Рисунок 53.

  2. Резонансная поляризация – возникает при совпадении частот вращения электронов с изменением магнитного поля.

  3. Ионная поляризация – смещение друг относительно друга положительных и отрицательных ионов. Время установления – 10^-11 с. Пример: поваренная соль. С ростом температуры параметры растут.

  1. Релаксационная

На ее создание тратится энергия, выделяемая в виде тепла, диэлектрические потери на переменном токе.

Разновидности:

  1. Дипольная релаксационная поляризация – поворот и ориентация молекул диполей по направлению поля.

Рисунок 54.

Время установления: 10^-2…10^-10 с.

Тау – время релаксации.

  1. Ионно-релаксационная поляризация – перемещение ионов от одного атома к другому в веществах с неполной упаковкой электронов. Пример: стекло.

Рисунок 55.

В жидком – проводники с электролитической проводимостью.

  1. Электронно – релаксационная – переход электрона к другому атому при поляризации.

Время установления: 10^-2…10^-5 с для комнатной температуры.

  1. Миграционная – наблюдается в неоднородных диэлектриках с проводящими включениями. Пример: бумага.

Рисунок 56.

Низкочастотная поляризация. Время релаксации: минуты и часы.

  1. Спонтанная поляризация. Фаза – состояние кристаллической решетки, ее структура.

В различных веществах возможно изменение фазы без изменения агрегатного состояния. Изменение фазы в диэлектриках может приводить к спонтанной поляризации – сегнетоэлектрики. Диэлектрическая проницаемость – до 10^5. Вид диэлектриков – нелинейные. Используются в датчиках.

Диэлектрическая проницаемость смеси.

Рисунок 57.