Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2. Життєвий цикл клітини. Поділ клітини

.pdf
Скачиваний:
157
Добавлен:
23.03.2016
Размер:
2 Mб
Скачать

Вторинний овоцит у фолікулі

Сперматозоони (сперматозоїди) мають здатність рухатися, що певною мірою забезпечує можливість зустрічі гамет. За зовнішньою морфологією і малою кількістю цитоплазми сперматозоони дуже різняться від інших клітин, але всі основні органели в них присутні.

Типовий сперматозоон має голівку, шийку і хвіст. На передньому кінці голівки розташована акросо-ма, яка складається з видозміненого комплексу Гольджі.

Основну масу голівки займає ядро. У шийці знаходиться центріоля й утворена мітохондріями спіральна нитка.

Сперматозоїд (а - схематичне зображення; б - мікрофотографія): 1 - акросома; 2 - голівка;

З - ядро; 4 - центросома; 5 - шийка;

6- мітохондріальна спіраль; 7 осьова нитка; 8 - центральне кільце; 9 - хвіст.

Усперматозоонів мала кількість цитоплазми (оскільки основна функція цих клітин - транспортування спадкового матеріалу до яйцеклітини), тому ядерно-

цитоплазматичне співвідношення - високе.

При дослідженні сперматозоонів під електронним мікроскопом виявлено, що цитоплазма голівки має не колоїдний, а рідинно-кристалічний стан. Цим досягається стійкість сперматозоонів до несприятливих умов зовнішнього середовища. Наприклад,

вони менше пошкоджуються іонізуючим випромінюванням, порівняно з незрілими статевими клітинами.

Сперматогенез у морської свинки. Ділянка поперечного перерізу звивистого канальця сім'яника

Розміри сперматозоонів мікроскопічні. Найбільші у тритона - близько 500 мкм, у

свійських тварин (собака, бик, кінь, баран) - від 40 до 75 мкм. Довжина сперматозоонів людини коливається в межах 52-70 мкм. Всі сперматозоони мають одноіменний (негативний) електричний заряд, що перешкоджає їх склеюванню. У

тварин утворюється дуже багато сперматозоонів. Наприклад, при статевому акті собака виділяє їх близько 60 млн., баран - 2 млрд., жеребець - 10 млрд., людина -

близько 200 млн.

Для деяких тварин характерні атипові сперматозоони. Наприклад, у ракоподібних вони мають вирости у вигляді променів або відростків, у круглих червів - форму кулястих або овальних тілець тощо.

Таким чином, статеві клітини суттєво відрізняються від соматичних клітин:

1)у статевих клітинах гаплоїдний набір хромосом, у соматичних - диплоїдний;

2)устатевих клітинах ядерно-цитоплазматичне співвідношення різне: у

сперматозоїдах воно високе, в яйцеклітині - низьке;

3)форма і розміри статевих клітин інші, ніж у соматичних;

4)статеві клітини відрізняються низьким рівнем обмінних процесів;

5)для яйцеклітин характерна цитоплазматична сегрегація (закономірний перерозподіл цитоплазми після запліднення).

Організми, які розмножуються статевим шляхом, утворюють статеві клітини, або гамети. Цьому передує особливий спосіб поділу клітинного ядра х попередників -

мейоз. З допомогою мейозу утворюються і дозрівають статеві клітини (сперматозоїди і яйцеклітини). Мейотичний поділ вперше описано в 1888 р. Він лежить в основі редукції числа хромосом (зменшення вдвоє): 2n – n. Із диплоїдних клітин утворюються гаплоїдні.

Якби статеві клітини містили диплоїдний набір хромосом, то їх число подвоювалося би в кожному поколінні. Оскільки кожен вид з покоління в покоління зберігає сталу кількість хромосом, то очевидна необхідність існування певних механізмів, у результаті яких число хромосом зменшувалося б удвічі. Це і забезпечується редукційним поділом, або мейозом. Поскільки при заплідненні об'єднуються материнський і батьківський набори хромосом, змен шення їх числа вдвічі при утворенні гамет - біологічно необхідний процес. У тварин мейоз проходить при утворенні гамет, а у квіткових рослин - раніше: при утворенні пилкових зерен і зародкових мішків. У мейоз вступають незрілі статеві клітини, які до-сягли певного диференціювання.

Мейоз складається з двох швидких у часі послідовних поділів клітин: першого і другого, причому подвоєння ДНК відбувається тільки перед першим поділом. Один з них називається редукційним, або першим мейотичним поділом, при якому число хромосом зменшується у два рази; інший - екваційний (рівний), або другий редукційний поділ, який нагадує мітотичний поділ.

Умейоз, як і в мітоз, вступають клітини з хромосомами, які складаються з двох сестринських хроматид. Після першого поділу швидко настає другий поділ, без підготовки і без синтезу ДНК. Другий мейотичний поділ відбувається за типом мітозу, тільки з тією відмінністю, що на всіх фазах буде вдвоє менше число хромосом.

Укожному поділі мейозу розрізняють профазу, метафазу, анафазу і телофазу. Фази першого поділу позначають римською цифрою І (профаза І, метафаза І і т.д.), а фази другого поділу цифрою II (профаза II, метафаза II та ін.).

Профаза І. На відміну від мітозу, де кожна окрема хромосома поводить себе незалежно від інших і не впливає на їх поведінку, в профазі І мейозу гомологічні хромосоми об'єднуються, формують парні утворення. Це тривала і складна фаза, вона характеризується певними послідовними стадіями залежно від стану хромосом.

Лептонема, або стадія тонких ниток. Хромосоми стають помітними у вигляді тонких ниток, кількість їх диплоїдна.

Зигонема - гомологічні хромосоми зближуються попарно, утворюють біваленти.

Число їх вдвоє менше, ніж вихідна кількість хромосом. Взаємне притягування хромосом отримало назву кон 'югація або синапсис. Кон'югація відбувається дуже точно, хромосоми з'єднуються кінцями або по всій довжині. Причому зближуються кожен хромомер і кожна ділянка однієї гомологічної нитки з відповідним хромомером і ділянкою іншої гомологічної нитки.

Пахінема, або стадія товстих ниток. Процес кон'югації гомологічних хромосом повністю завершується. Вони настільки зближені, що їх легко можна прийняти за одну. Кожна хромосома в біваленті подвоєна і складається з двох сестринських хроматид. Біваленти іноді називають тетрадами. На стадії пахінеми відбувається

кросинговер - обмін ідентичними ділянками між гомологічними хромосомами.

Диплонема, або стадія подвійних ниток. Хромосоми, які утворили біваленти,

розпочинають поступово відштовхуватися одна від одної, залишаючись з'єднаними між собою в окремих ділянках (хіазмах). Кожна хромосома складається з двох хроматид, а кожний бівалент утворює тетраду. Переплетені одна навколо одної хромосоми (біваленти) поступово розкручуються і зменшується число хіазм.

Діакінез - заключна стадія профази І. У діакінезі біваленти різко вкорочені,

потовщені дочірні хроматиди кожної хромосоми мало помітні. Хіазми поступово зміщаються на кінці хромосом. Завершується профаза І зруйнуванням ядерної оболонки, формуванням ахроматинового веретена.

Метафаза І. Число бівалентів удвічі менше від диплоїдного набору хромосом.

Біваленти значно коротші, ніж хромосоми в метафазі соматичного мітозу, і

розміщаються в екваторіальній площині. Центромери хромосом з'єднуються з нитками фігури веретена. У цю фазу мейозу можна підрахувати кількість хромосом.

Анафаза І. До протилежних полюсів веретена розходяться гомологічні хромосоми. Кожна з них складається із двох дочірніх хроматид, з'єднаних своїми центромерами. У цьому полягає істотна відмінність від анафази мітозу.

Телофаза І. Розпочинається, коли анафазні хромосоми досягли полюсів клітини, на кожному з них знаходиться гаплоїдне число хромосом. Характеризується появою ядерної мембрани і відновленням структур ядра. Утворюються дві дочірні клітини.

Інтерфаза між І і II поділом мейозу буває дуже короткою. На відміну від звичайної інтерфази тут відсутня репродукція хромосом. Мейоз II відбувається за типом звичайного мітозу.

Профаза II. Ця стадія нетривала, хромосоми добре помітні.

Метафаза II. Чітко визначена подвійна структура хромосом і значний ступінь їх спіралізації.

Анафаза II. Відбувається розходження подвоєних центромер, внаслідок чого дочірні хроматиди рухаються до різних полюсів.

Телофаза II. Завершується утворенням чотирьох клітин з гаплоїдним набором хромосом.

Для полегшення сприйняття поведінки хромосом при мейозі і мітозі наведено порівняльну характеристику їх фаз.

Механізми, які призводять до генетичної різноманітності гамет.

У процесі мейозу створюються можливості виникнення в гаметах нових генних комбінацій.

Механізми, які забезпечують генетичну мінливість:

1. Зменшення числа хромосом від диплоїдного до гаплоїдного супроводжується розходженням алелів так, що кожна гамета має тільки один алель у локусі.

Реципрокний обмін генами між хроматидами гомологічних хромосом може відбуватися у профазі І мейозу. Таким чином утворюються нові групи зчеплення, і

відповідно генетичні рекомбінації алелів.

2.Біваленти в екваторіальній площині веретена поділу в метафазі І і хромосоми в метафазі II розташовуються довільно і випадково. Наступне їх розділення (сегрегація)

ванафазах І і II відповідно створює нові комбінації алелів у гаметах. Такий незалежний розподіл призводить до великої кількості різних хромосомних комбінацій, до випадкового розподілу материнських і батьківських хромосом між дочірніми ядрами.

3.Утворення хіазм між гомологічними хромосомами у профазі І і наступний кросинговер зумовлюють нові комбінації алелів у хромосомах статевих клітин.

Генетичне значення мейотичного поділу полягає в наступному:

1.У результаті мейозу кожна материнська клітина дає початок чотирьом клітинам з "редукційним", тобто зменшеним удвоє, числом хромосом.

2.Мейоз є механізмом, який підтримує видову сталість кількості хромосом і зумовлює постійність видів на Землі. Якби число хромосом не зменшувалося, то в кожному наступному поколінні відбувалося б зростання їх удвічі (у батьків - 46, у дітей

-92, в онуків - 184, у правнуків - 368 і т.д.)

Мейоз забезпечує завдяки випадковій комбінації материнських і батьківських хромосом гене тичну різнорідність гамет. Тобто мейоз сприяє ком-бінативній мінливості (гени батьків комбінуються, внаслідок чого в дітей можуть з'являтися ознаки, яких не було в батьків). Комбінативна мінливість забезпечує велику різноманітність людства і дає можливість пристосуватися до зміни умов середовища,

сприяє виживанню виду.

3. Мейоз забезпечує різнорідність гамет за генетичним складом, сприяє внаслідок рекомбінації ділянками гомологічних (парних) батьківських хромосом утворенню хромосом нового генетичного складу. У профазі цьому сприяв кросинговер, у

метафазі - вільне перекомбінування хромосом. Тобто виникає рекомбінація батьківських наборів хромосом.

У результаті нормального процесу мейозу в людини утворюються гамети з гаплоїдним набором хромосом (23 хромосоми). Коли обидві хромосоми однієї пари не розділяються і залишаються в одній і тій же зародковій клітині (нерозходження), то остання містить 24, а інша тільки 22 хромосоми. Подібний результат може спостерігатися у випадку, коли дві гомологічних хромосоми не кон'югують. Якщо при заплідненні одна з гамет містить на одну хромосому менше, то виникає моносомна зигота, з якої розвивається переважно нежиттєздатний ембріон. Гамета з 24

хромосомами після запліднення нормальною гаметою з 23 хромосомами є причиною три-сомії.

Нерозходження може настати як в 1-му, так і в 2-му поділі дозрівання. В окремих випадках за флуоресцентними ознаками можна встановити, чи нерозходження мало місце у матері, чи у батька.

Близько 2 % всіх зигот містять лишню хромосому. Проте майже 96 % зигот з аутосомними трисо-міями спонтанно абортують, так що з всіх новонароджених лише у 0,3 % діагностується трисомія, з яких у 0,1 % - аутосомна.

Спонтанні аномалії мейозу зустрічаються у статевих клітинах, які розвиваються.

Мости, відставання хромосом при розходженні, багатополюсні мітози, "нерозходження" та ін. порушення мейозу спостерігаються у статевих клітинах комах, тритона, в рослинних клітинах.

Причини, які можуть викликати порушення розходження хромосом у мейозі:

1)вплив іонізуючої радіації;

2)негативна дія на статеві залози рентгенівського проміння;

3)вплив хімічних мутагенів (солі азотистої кислоти, органічні сполуки ртуті тощо.)

4)перенесені під час вагітності вірусні інфекції (вірус віспи, кору, вітряної віспи,

епідемічного паротиту, грипу та ін.)

Ряд спадкових уроджених ознак нащадків корелює з фізіологічними особливостями матері, зокрема, з її віком. Спостерігається кореляція між віком матері і частотою народження дітей з аномаліями. Доведено невпинне зростання відсотка дітей з ви-

родливостями із збільшенням віку матері від 30 до 49 років. У групі матерів віком від

45 до 49 років частота народження дітей з вадами розвитку в три рази більша, ніж у матерів у віці 15-29 років. Встановлено, що частота уроджених вад серця, аномалій нервової системи, зокрема, аненцефалія, гідроцефалія, spina bifida збільшується з віком матері

"Заяча губа" і "вовча паща" теж переважають у дітей від матерів старших вікових груп.

Морфологія хромосом. Каріотип людини.

Хроматин

структурна організація

еухроматин та гетерохроматин

статевий хроматин

Генетичний матеріал в інтерфазному ядрі знаходиться у вигляді хроматинових ниток. Переплітаючись всередині ядра, вони утворюють хроматинову сітку. Кількість хроматинових ниток відповідає ди-плоїдному набору хромосом. Хроматинові нитки -

це комплекс ДНК і білків у співвідношенні 1:1.

Організація хроматину. До складу хроматину входять основні (гістонові) і кислі

(негістонові), або нейтральні) білки. Відомо п'ять різновидів гістонів: НІ, Н2А, Н2В,

НЗ і Н4. Поєднуючись між собою, чотири останніх утворюють білкові диски

(гістоно-вий кір), на які накручується ДНК. Така елементарна одиниця будови хроматину називається нуклеосомою (лат. nucleus - ядро, soma - тіло). Гістон НІ відповідальний за компактну укладку нуклеосом-ного ланцюга і з'єднує нуклеосоми між собою.

Під електронним мікроскопом велика частина хроматину являє собою волокна з дуже маленьким діаметром. Це основна форма упаковування хроматину,

загальновідома як хроматинове волокно діаметром 30 нм. Хоча молекули ДНК дуже довгі, вони упаковуються за допомогою гістонів у спіраль значно меншої довжини.

Нуклеосоми - дископодібні частки діаметром близько 11 нм. Гістоновий окта-мер утворює протеїновий стрижень, навколо якого закручується певний сегмент двониткової ДНК. Нитка ДНК продовжується від нуклеосоми до нуклеосоми, кожна з яких відокремлюється від наступної ділянкою літерної ДНК, що являє собою при-

близно 60 пар азотистих основ. Лінкерна ДНК і визначена ділянка нуклеосоми складають повну нук-леосому, що містить 200 пар азотистих основ ДНК.

У кожній нуклеосомній частці фрагмент подвійної спіралі ДНК, довжиною 146 пар основ, обернутий біля кору, що являє собою гістоновий октамер. Цей білковий кір містить по дві молекули кожного з гістонів Н2А, Н2В, НЗ, Н4. У деконденсованій формі хроматину кожна нуклеосома зв'язана з сусідньою частинкою ниткоподібною ділянкою лінкерної ДНК.

Негістонові білки - це велика гетерогенна група протеїнів. Серед них є структурні і регуляторні білки, що беруть участь у регуляції генів, а також деякі ферменти (ДНК-

полімерази, РНК-полімерази).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]