Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2. Життєвий цикл клітини. Поділ клітини

.pdf
Скачиваний:
157
Добавлен:
23.03.2016
Размер:
2 Mб
Скачать

Розміри і форма хромосом. Розміри хромосом варіюють від одного біологічного виду до іншого. Хромосоми різних організмів на стадії метафази мають довжину від

0,1 до 33,0 мкм і товщину від 0,2 до 2,0 мкм. Хромосоми рослин мають більші розміри, ніж хромосоми тварин. Хромосоми різних пар однієї і тієї ж клітини різняться за розміром. Розмір хромосом людини: в середньому 1,5 мкм у товщину і

10,0 мкм у довжину.

Форма хромосом визначається за відносним положенням центромери (первинної перетяжки). На підставі цього розрізняють такі форми хромосом: І)

метацентрична - хромосома має Х-подібну форму, при якій центромера знаходиться всередині так, що плечі є рівними за довжиною; 2) субметацентрична -

хромосома має Х-формуз центромерою, віддаленою від середньої точки так, що її плечі є нерівними за довжиною; 3) акроцентрична - центромера розташована дуже близько до одного з кінців хромосоми, тобто вона має плечі, що суттєво відрізняються за розмірами, маленькі плечі часто мають супутники.

Форми хромосом у метафазі (схема): 1 - метацентрична; 2 - суб-метацентрична; 3 -

акроцентрична; 4 - телоцентрична.

Каріотип людини має всі різновиди хромосом.

Правила хромосом. 1. Специфічність набору хромосом для кожного виду.

Рослини і тварини мають сталий набір хромосом у кожній соматичній клітині.

Диплоїдний набір хромосом (2п)

для людини - 46, для дрозофіли - 8, для коня - 66, шимпанзе - 48, собаки - 78 і т. д.

Гаплоїдний набір (п) для людини - 23, дрозофіли - 4 і т. д. Гамети містять тільки

одинарний набір хромосом. Число хромосом часто використовується для ідентифі-

кації виду.

Як видно з таблиці, число хромосом не залежить від рівня організації виду і не завжди вказує на філогенетичну спорідненість. Однакова кількість хромосом може зустрічатися в далеких один від одного видів і дуже відрізнятися у близьких. Однак істотні відмінності й специфічність виявляються в тому, що кожний вид має у своєму наборі хромосоми певної форми і розмірів. А головне - усі хромосоми мають свій унікальний набір генів, що визначають розвиток особин тільки певного виду.

Хромосомний комплекс виду з усіма його особливостями - числом хромосом,

формою, наявністю видимих у світловий мікроскоп деталей будови окремих хромосом - називається каріотипом.

2. Парність хромосом. Слід звернути увагу на те, що у всіх наведених у таблиці прикладах число хромосом парне. Це пов'язано з тим, що хромосоми складають пари. Кожна хромосома соматичних клітин має аналогічну собі хромосому.

Хромосоми з такої пари мають однаковий розмір, форму і склад генів. Пари хромосом,

що мають однакові гени або їх алелі, та контролюють альтернативні ознаки, на-

зиваються гомологічними. Гомологічні хромосоми однакові за розміром і формою. У

них збігаються розміщення центромер, порядок розташування хро-момер і міжхромомерних ділянок та інші елементи будови. Негомологічні хромосоми мають зовсім інші характеристики.

Одна гомологічна хромосома надається від одного з батьків (батька), а інша від другого (матері). Генетична інформація, необхідна для розвитку організму,

міститься тільки в повному комплекті всіх негомологічних хромосом (тобто в повному диплоїдному наборі хромосом).Індивідуальність окремих пар хромосом.

3. Індивідуальність окремих пар хромосом.

Кожна пара гомологічних хромосом індивідуума відрізняється від іншої пари за розміром, формою і генетичним складом. Наприклад, перша пара хромосом людини

(метацентричні, найбільші, мають індивідуальну посмугованість) дуже відрізняється від 22-ї пари (акроцентричні, найменші, мають вторинну перетяжку і супутник). Вони містять різні гени, що визначають розвиток різних ознак.

4. Безперервність хромосом. Це означає, що кожна дочірня хромосома походить від материнської хромосоми. В інтерфазі (S-періоді) відбувається подвоєння ДНК і утворюються дві ідентичні дочірні молекули, що формують хромосому. Така хромо-

сома складається з двох хроматид, що потім потрапляють у різні клітини внаслідок мітозу. У кожному наступному поділі цей цикл повторюється. Це забезпечує стабільність каріотипу організмів впродовж тисячоліть.

Таким чином, у послідовних генераціях клітин зберігається постійне число хромосом та їх індивідуальність внаслідок здатності хромосом до точної репродукції при поділі клітини. Отже, не тільки "кожна клітина від клітини", але і "кожна хромосома від хромосоми".

Хромосоми людини: а - пара 1; б - пара 22.

Характеристика нуклеїнових кислот

Клітини здатні підтримувати високу впорядкованість своєї організації завдяки генетичній інформації, що зберігається, відтворюється, реалізується й удосконалюється.

В основі названих фундаментальних явищ є молекулярні процеси, що відбуваються за допомогою ДНК і РНК.

Вони є генетичним матеріалом для всіх живих організмів, включаючи віруси.

Встановлення структури ДНК відкрило нову епоху в біології, так як дозволило зрозуміти, яким чином живі клітини, а значить і організми, точно відтворюють собі подібних і як у них кодується інформація, яка необхідна для регуляції їх життєдіяльності.

Дж. Уотсон і Ф. Крік встановили, що ДНК складається з двох полінукпеотидних ланцюгів, закручених у спіраль. Мономером ланцюга є нуклеотид. Послідовність нуклеотидів визначає послідовність амінокислот у поліпептидному ланцюгу. Одна амінокислота кодується триплетом нуклеотидів (генетичний код).

Для передачі генетичної інформації з ядра, де знаходиться ДНК, потрібна ІРНК. її синтез на матриці ДНК (транскрипція) необхідний для перенесення інформації до цитоплазми, де на рибосомах відбувається синтез поліпептидно-го ланцюга

(трансляція), в якому беруть участь іРНК,рРНК,тРНК.

Сьогодні відомі будова та функції ДНК і РНК, що дозволяє втручатися в тонкі механізми спадковості з метою лікування багатьох хвороб людини. Клітини складаються з білків, на частку яких припадає майже половина сухої речовини. Білки визначають структуру, форму і функції клітини. Відомо понад 170 амінокислот, проте тільки 20 з них визначають поліпептидну молекулу. Білки є полімерами, а

амінокислоти - їх мономерні ланки. Різноманітність білків необмежена і зумовлена унікальною, властивою для кожного білка амінокислотною послідовністю.

Проте в природі не доведено жодного випадку, коли б молекула білка

(поліпептиду) синтезувала собі подібну молекулу.

Біологічна інформація зберігається в генах у структурі ДНК у такій формі, що вона може точно копіюватися і передаватися наступним клітинам. Однак гени, так само як і ДНК, не здатні до прямого синтезу полі-пептидних ланцюгів. Яким чином полінуклеотиди (ДНК, гени) зумовлюють синтез поліпептидів? Як здійснюється потік біологічної інформації?

Спадкова інформація ДНК записана в лінійній послідовності нуклеотидів (рис.

1.46). Передача (реплікація) інформації розпочинається поділом двох комплементарних ланцюгів, на кожному з яких утворюється нова молекула ДНК. Під час транскрипції розгорнутого ланцюга з певних фрагментів ДНК утворюється РНК.

Такий первинний транскрипт РНК значно довший за дозрілу молекулу РНК. Оче-

видно, що значна частина первинного транскрипту РНК руйнується в ядрі і тільки

1/20 його надходить до цитоплазми. Це і є власне мРНК, або ІРНК. Молекули РНК-

одноланцюгові, вони коротші за ДНК. Кількість утворених молекул РНК з певної

ділянки ДНК контролюється регуляторними білками. Отже, ДНК направляє синтез специфічних РНК.

Транскрипція генетичної інформації з ДНК на РНК і є першим кроком потоку біологічної інформації. РНК-продукт не залишається комплементарно зв'язаним з ДНК-

матрицею. Щойно після синтезу РНК подвійна спіраль ДНК відновлюється. Наступний крок - трансляція мРНК. В еукаріотичних клітинах тривалість існування цієї молекули різна - від 30 хв. до 10 год.

Молекула мРНК покидає ядро, виходить у цитоплазму і скеровує синтез певного білка на рибосомах. Перенесення інформації від мРНК до білка ґрунтується на принципі комплементарності основ, як і перенесення генетичної інформації від ДНК до ДНК, або від ДНК до РНК.

Отже, генетична інформація записана в лінійній послідовності нуклеотидів ДНК. За участі РНК ця інформація надходить (транслюється) до рибосом з утворенням поліпептиду з амінокислот.

Потік біологічної інформації відбувається такими шляхами:

Переконливі докази того, що саме з ДНК пов'язана передача спадкової інформації,

отримані при вивченні вірусів. Проникаючи в клітину, вони вносять у неї лише нуклеїнову кислоту з дуже невеликою кількістю білка, а вся білкова оболонка залишається поза клітиною. Отже, введена у клітину ДНК передає генетичну інформацію, необхідну для утворення такого ж біологічного виду. Виявлено, що чиста нуклеїнова кислота вірусу тютюнової мозаїки може заразити рослину і викликає типову картину захворювання. Більш того, вдалося штучно створити вегетативні

"гібриди" із вірусів, у яких білковий футляр належить одному виду, а нуклеїнова кислота

- іншому. У таких випадках генетична інформація "гібридів" завжди з точністю відповідала тому вірусу, нуклеїнова кислота якого входила до складу "гібриду".

Вагомі докази ролі ДНК у передачі спадкової інформації отримані також в експериментах на мікроорганізмах завдяки явищам трансформації, трансдукції і кон'югації. Трансформація (від лат. transformatio - перетворення) - включення чужорідної ДНК у геном клітини-хазяїна, що призводить до зміни її структурних і функціональних властивостей. Перенесення спадкової інформації від однієї клітини до

іншої здійснюється за допомогою ДНК клітини-донора. Явище трансформації було виявлено в дослідах англійського мікробіолога Гріффітса (1928) (рис. 1.47).

Трансдукція ( від лат. transductio — переміщення) полягає в тому, що віруси,

залишивши бактеріальні клітини, в яких вони паразитували, можуть захоплювати частину їх ДНК і, потрапивши в нові клітини, передають новим хазяїнам властивості попередніх. Це явище вперше було відкрито в дослідженнях по зараженню бактерій вірусами.

Кон'югація (від лат. conjugatio - з'єднання) -це перенесення генетичного матеріалу від однієї бактерії до іншої шляхом утворення цитоплазматичного містка,

переміщення частини ДНК та її інтеграція з геномом клітини-реципієнта. Будова молекули ДНК. Макромолекула ДНК -це два довгі полімерні ланцюги, що складаються з мономерів дезоксирибонуклеотидів, тісно з'єднаних між собою. Нитки ДНК з'єднуються водневими зв'язками між азотистими основами двох ланцюгів і утворюють подвійну спіраль ДНК. Таку модель будови ДНК запропонували в 1953 р.

Дж. Уотсон і Ф. Крік. Вони використовували також дані, отримані іншими вченими

(Р. Франклін, М. Уілкінс, Е. Чаргафф), які за допомогою рентгенівської дифракції й інших методів вивчали фізичну та хімічну природу ДНК. Пуринові та піримідинові основи взаємодіють одна з одною. Аденін одного ланцюга двома водневими зв'язками з'єднується з тиміном іншого ланцюга, а гуанін - трьома водневими зв'яз-

ками з цитозином. Таке сполучення азотистих основ забезпечує міцний зв'язок обох ланцюгів. Два полінуклеотидні ланцюги ДНК антипаралельні. Тобто, 5'-кінець одного ланцюга з'єднаний із З'-кінцем іншого, і навпаки. Генетична інформація записана по-

слідовністю нуклеотидів у напрямку від 5'-кінця до З'-кінця. Така нитка називається

"змістовною", саме тут розташовані гени (матричний ланцюг). Другий ланцюг у напрямку 3'-5' вважається "анти-змістовним". Він необхідний як "еталон" збереження генетичної інформації і набуває значення у процесах реплікації та репарації.

Два довгі антипаралельні полімерні ланцюги, що складаються із дезоксирибонуклеотидів, міцно з'єднані між собою водневими зв'язками. В резуль-

таті цього утворюється подвійна спіраль, закручена навколо центральної осі.

Рентгеноструктурний аналіз показав, що діаметр подвійної спіралі складає 2 нм,

відстань між двома завершеними витками - 3,4 нм. У кожний виток входить 10 пар нуклеотидів. Відстань між сусідніми основами складає 0,34 нм.

Нуклеотиди. ДНК - це полімерна молекула, мономерами в якій є иуклеотиди.

Нуклеотид складається з: 1) азотистої основи; 2) моносахариду дезоксирибози (в

нуклеотидах РНК - рибози); 3) залишку фосфорної кислоти.

Азотисті основи бувають двох типів: пуринові -аденін (А) і гуанін (Г) і

піримідинові - тимін (Т) і цитозин (Ц).

До складу молекули ДНК входять чотири типи нуклеотидів: дезоксиаденозин-

монофосфат (дАМФ), дезоксигуанін-монофосфат (дГМФ), дезокситимі-дин-

монофосфат (дТМФ), дезоксицитозин-моно-фосфат (дЦМФ). Сполучення нуклеотидів у молекулі ДНК відбувається в результаті взаємодії фосфату одного нуклеотиду з гідроксильною групою дезоксирибози іншого. В результаті утворюється фос-фодиефірний зв'язок, що об'єднує нуклеотиди в довгий ланцюжок. Скелет ланцюга складається з молекул фосфату і пентоз, що чергуються. Синтез полі-

нуклеотидного ланцюга відбувається за участю ферменту ДНК-полімерази. Цей фермент приєднує фосфатну групу одного нуклеотиду до гідроксильної групи дезоксирибози наступного.

Комплементарність пар основ. Два полінуклеотидні ланцюги ДНК не є ідентичними, але вони комплементарні один одному. Це пов'язано із строгою відповідністю основ одного ланцюга основам іншого. Відстань між двома ланцюгами ДНК - 2 нм, що дозволяє вмістити тільки одну пару А-Т або Г-Ц, які відповідають цим розмірам. Тільки аденін і тимін, а також гуанін і цитозин мають відповідні просторові структури для утворення водневих зв'язків. Концепція специфічного зв'язування пар основ свідчить, що аденін в одному ланцюгу повинен відповідати тиміну в іншому, а гуанін повинен мати навпроти себе цитозин в іншому ланцюгу.

Таким чином, два ланцюги ДНК комплементарні один одному. Колінеарність (від лат. collineare - мітити, направляти) - властивість, що зумовлює відповідність між послідовностями триплетів нуклеотидів (кодонів) нуклеїнових кислот і амінокислот поліпептидних ланцюгів. Тобто, послідовність амінокислот білка, в якій відповідні

кодони розташовуються в гені. Це означає, що положення кожної амінокислоти в поліпеп-тидному ланцюгу білка залежить від положення відповідного триплету в гені. Генетичний код вважається колінеарним, якщо кодони нуклеїнових кислот і відповідні їм амінокислоти білка розташовані в однаковому лінійному порядку.

Явище колінеарності доведено експериментально. Так, встановлено, що серпоподібноклітинна анемія, за якої порушена будова молекули гемоглобіну,

зумовлена зміною одного нуклеотиду в його гені, що призводить до заміни однієї амінокислоти на іншу. Гіпотеза про те, що послідовність нуклеотидів у гені визначає послідовність амінокислот білка, була висунута Г. А. Гамовим (1954). Дані про колінеарність генів і поліпептидів підтвердили її. Завдяки концепції колінеарності можна визначити порядок нуклеотидів усередині гена і в інформаційній РНК, якщо відомий амінокислотний склад поліпептидів, і навпаки, визначивши склад нуклеотидів ДНК,

можна передбачити амінокислотний склад білка. Цей принцип використовується в методах молекулярної біології. Із цієї концепції видно, що зміна порядку нуклеотидів усередині гена (його мутація) призводить до зміни амінокислотного складу білка.

Правила Е. Чаргаффа.

Вивчаючи хімічний склад ДНК в 1950 році, Ервін Чаргафф сформулював

важливі положення щодо

структури ДНК:

I. Молярна частка пуринів (аденіну - А і гуаніну - Г) дорівнює молярній частці піримідинів (цитозину - Ц і тиміну - Т):

А+Г=Ц+Т, або А+Г/Ц+Т=1

II. Кількість аденіну і цитозину дорівнюєкількості гуаніну і тиміну:

А+Ц=Г+Т, або А+Ц/Г+Т=1

III. Кількість аденіну дорівнює кількості тиміну, а кількість гуаніну дорівнює кількості цитозину:

А=Т, або А/Т=1, Г=Ц, або Г/Ц=1

IV. Відношення суми молярних концентрацій Г+Ц до суми молярних концентрацій А+Т у різних видів значно змінюється: Г+Ц/А+Т названо коефіцієнтом специфічності. Для бактерій коефіцієнт специфічності дорівнює 0,45-2,8, для вищих рослин, тварин і людини - 0,45-0,94.

V. Існують види ДНК, в яких А+Т > Г+Ц (АТ-тип) та ДНК, в яких А+Т<Г+Ц (ГЦ-

тип).

АТ-тип ДНК характерний для вищих рослин, тварин і людини. ГЦ-тип властивий грибам, бактеріям, вірусам.

Ці правила є основою встановлення хімічної і фізичної природи ДНК, просторової структури молекули, а також механізму генетичного коду.

Видова специфічність ДНК. За співвідношенням (А+Т) і (Г+Ц) представники різних видів різняться між собою, причому у тварин переважає пара А+Т, а у мікроорганізмів співвідношення (А+Т) і (Г+Ц) однакове. Ці явища використовують як один із генетичних критеріїв визначення виду. У цьому полягає індивідуальна специфічність ДНК. У таблиці 1.9 наведено приклади співвідношення основ ДНК різних видів організмів.

Просторова організація ДНК Молекула ДНК може існувати в різній конфігурації залежно від навколишніх умов. Відомо декілька форм ДНК: а) В-форма - має стандартну структуру відповідно до моделі молекули Уотсона і Кріка і в нормальних фізіо-

логічних умовах є основним структурним типом;

б) А-форма - виявлена у зневодненому середовищі при високому вмісті калію і натрію. Така ДНК має дещо змінену спіралізацію;

в) С-форма - має менше основ на один виток, а значить інші - фізичні характеристики;

г) Z-форма - на відміну від інших форм, закручена вліво.

Деякі форми при зміні фізіологічних умов можуть переходити одна в одну, що додатково регулює роботу генів. Знання структури ДНК дозволило зрозуміти суть багатьох молекулярно-генетичних процесів.

Отже, в молекулі ДНК можна виділити первинну структуру — послідовність нуклеотидів у ланцюгу, вторинну структуру - два комплементарні анти-паралельні ланцюги, з'єднані водневими зв'язками, і третинну структуру - тривимірну спіраль.

Зазначимо, що: а) геометрія спіралі ДНК залежить від послідовності нуклеотидів; б)

значна частина ДНК не кодує білків або РНК; в) кожний ген - це складна функціонально-активна одиниця, призначена для регульованого синтезу РНК.

Рибонуклеїнові кислоти (РНК). Спадкова інформація зберігається в молекулі ДНК. Проте ДНК не бере участі в життєдіяльності клітин. Роль посередників у передачі спадкової інформації від ДНК у цитоплазму відіграють рибонуклеїнові кис-

лоти. Взаємовідносини ДНК, РНК і білків можна представити у вигляді схеми ДНК —

> РНК —> білок.

Уцьому випадку один з ланцюгів ДНК є матрицею для молекул РНК, що, зокрема,

єматрицями синтезу білків або входять до складу рибосом чи переносять амінокислоти.

РНК мають вигляд довгих нерозгалужених полімерних молекул, що складаються з одного ланцюга. Одноланцюгові РНК можуть утворювати подвійні спіралі, якщо різні частини ланцюга мають антипаралельні комплементарні сегменти, пов'язані один з одним. У частини вірусів РНК є носієм спадкової інформації за відсутності ДНК. Деякі РНК мають каталітичну активність на певні клітинні процеси. РНК -

полімер рибонуклеотидів, що складаються із фосфорної кислоти, рибози й азотистих основ (аденін, гуанін, цитозин, урацил). Рибоза разом із залишками фосфорної кислоти утворює скелет молекули, на якому розташовані азотисті основи. Усі різновиди РНК синтезуються на молекулах ДНК за участю ферментів РНК-полімераз на основі принципу комплементарності. При цьому в синтезованій молекулі аденін ДНК комплементарний урацилу РНК, а гуанін - цитозину. Якщо вміст ДНК у клітинах постійний, то вміст РНК дуже коливається у залежності від типу клітини,

інтенсивності метаболізму і синтезу білків.

Молекули РНК мають багато спільного зі структурою ДНК, але відрізняються

низкою ознак:

а) вуглеводом РНК є рибоза,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]