Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 коллок Митохондриальное окисление.docx
Скачиваний:
67
Добавлен:
12.04.2017
Размер:
1.2 Mб
Скачать
  1. Формула альфа-кетоглутаровой кислоты. Роль.

Промежуточный продукт обмена углеводов, жиров и белков у животных, растений и микроорганизмов. Важная роль К. к. в обмене веществ определяется её участием в Трикарбоновых кислот цикле. К. к. образуется при окислении изолимонной кислоты и при переаминировании (переносе аминогруппы) и дезаминировании (потере аминогруппы) глутаминовой кислоты. Участвуя одновременно в белковом и углеводном обмене, К. к. связывает углеводный обмен с превращениями жиров и углеводов.

Билет 11

  1. Окислительное фосфорилирование. Эффективность. Коеф р/о.

Синтез АТФ за счет энергии, которая выделяется в системе МтО, называется ОКИСЛИТЕЛЬНЫМ ФОСФОРИЛИРОВАНИЕМ. Основная роль АТФ - обеспечение энергией процесса синтеза АТФ.

Для оценки эффективности работы системы МтО при окислении вычисляют КОЭФФИЦИЕНТ P/O. Он показывает, сколько молекул неорганического фосфата присоединилось к АДФ в расчете на один атом кислорода.

Для главной (полная) цепи Р/О=3 (10H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 3,3 (округляют до 3-х)), коэффициент полезного действия системы - 65%, для укороченной P/O=2 (6H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 2, для максимально укороченной P/O=1 (4H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 1.

Система МтО потребляет 90% кислорода, поступающего в клетку. При этом в сутки образуется 62 килограмма АТФ. Но в клетках организма содержится всего 20-30 граммов АТФ. Поэтому молекула АТФ в сутки гидролизуется и снова синтезируется в среднем 2500 раз (средняя продолжительность жизни молекулы АТФ - полминуты).

  1. Написать реакцию субстратного фосфорилирования, протекающую в цтк. Класс фермента

Класс лигаза (синтетаза)

3. Витамины учавствующие в био окислении. Роль.

Витамин В2

Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь просте-тическими группами ферментов ряда других сложных белков – флаво-протеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы L- и D-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении.

Витамин РР

Витамин РР входит в состав НАД или НАДФ, являющихся коферментами большого числа обратимо действующих в окислительно-восстановительных реакциях дегидрогеназ (формулы ко-ферментов приведены в главе 9). Показано, что ряд дегидрогеназ использует только НАД и НАДФ (соответственно малатдегидрогеназа и глюкозо-6-фосфатдегидрогеназа), другие могут катализировать окислительно-восстановительные реакции в присутствии любого из них (например, глутаматдегидрогеназа; см. главу 12). В процессе биологического окисления НАД и НАДФ выполняют роль промежуточных переносчиков электронов и протонов между окисляемым субстратом и флавиновыми ферментами (молекулярные механизмы участия пиридиновых нуклеотидов в этом процессе подробно рассматриваются в главе 9).

  1. Монооксигеназы( вопрос как в 10 билете 3)

  2. Атф.

Билет 12