Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зачет.doc
Скачиваний:
62
Добавлен:
21.04.2017
Размер:
637.95 Кб
Скачать

2. Когерентные волны. Интерференция света. Оптическая разность хода

Когерентностью называется согласованное протекание нескольких колебательных или волновых процессов. Степень согласования может быть различной.

Пусть в данную точку пространства приходят две световые волны одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления:

Е = А1соs(wt + a1), Е = A2cos(wt + a2), тогда амплитуда результирующего колебания А2 = А1222 + 2А1А2соsj, (1) где j = a1 - a2 = const.

Если частоты колебаний в обеих волнах w одинаковы, а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными.

При наложении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (1). Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

В случае когерентных волн, соsj имеет постоянное во времени значение, но свое для каждой точки пространства, так что I = I1 + I2 + 2Ö I1 × I2 cosj (2).

При наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I1=I2. Тогда согласно (2) в максимумах I = 4I1, в минимумах же I = 0. Все естественные источники света (Солнце, лампочки накаливания и т.д.) не когерентны.

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их др. на др., наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

До точки Р первая волна проходит в среде показателем преломления n1 путь S1, вторая волна проходит в среде с показателем преломления n2 путь S2. Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А1соsw(t – S1/V1), а вторая волна - колебание А2соsw(t – S2/V2), где V1 и V2 - фазовые скорости. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна j = w(S2/V2 – S1/V1) = (w/c)(n2S2 – n1S1).

Заменимw/с через 2pn/с = 2p/lо (lо - длина волны в),тогда j = (2p/lо)D, где D= n2S2 – n1S1 = L2 - L1 есть величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме: D = ±mlо (m = 0,1,2), (4) то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Это условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме: D = ± (m + 1/2)lо (m =0, 1,2, ...), (5) то j = ± (2m + 1)p, так что колебания в точке Р находятся в противофазе. Это условие интерференционного минимума.

Соседние файлы в предмете Физика