Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОМИНЭ - Симонов ответы на экзамен 2017-18.docx
Скачиваний:
97
Добавлен:
12.04.2018
Размер:
1.39 Mб
Скачать

1) Элементы коммутации изделий микроэлектроники.

<не нашёл>

2) Схема и принцип действия усилительного прибора.

Усилителем называется устройство, предназначенное для усиления мощности входного сигнала. Усиление происходит с помощью активных элементов за счет потребления энергии от источника питания. Активными элементами в усилителях чаще всего являются транзисторы; такие усилители принято называть полупроводниковыми, или транзисторными. В любом усилителе входной сигнал управляет передачей энергии источника питания в нагрузку. Принцип действия усилительного каскада удобно пояснить с помощью схемы, приведенной на рис. Основой усилителя являются два элемента: резистор R и управляемый активный элемент (АЭ) – транзистор, сопротивление которого изменяется под действием входного сигнала Uвх. За счет изменения сопротивления АЭ изменяется ток, протекающий от источника питания с напряжением Eп в цепи резистора R и АЭ. В результате будут меняться падение напряжения на резисторе, а следовательно, и выходное напряжение Uвых. Здесь процесс усиления основан на преобразовании энергии источника питания Eп в энергию выходного напряжения

3) Гетеропереход между полупроводниками разного типа электропроводности.

(Больше инфы билет 20 вопрос 1)

Гетерогенный переход (гетеропереход) — это переход, который образуется в месте контакта различных по химическому составу полупроводников. Гетеропереход может быть образован между двумя монокристаллическими или аморфными полупроводниками, а также между монокристаллическим и аморфным полупроводниками. Однако, наибольшее практическое значение имеют гетеропереходы, образованные монокристаллами. В таком гетеропереходе кристаллическая решетка одного материала без нарушения периодичности переходит в решетку другого материала.

Различают изотипные и анизотипные гетеропереходы. Если гетеропереход образован двумя полупроводниками одного типа проводимости, то говорят об изотипном гетеропереходе. Анизотипные гетеропереходы образуются полупроводниками с разным типом проводимости.

Как изотипный, так и анизотипный гетеропереходы могут обладать выпрямляющим эффектом (выпрямляющий переход) или не обладать (омический переход).

Одним из важнейших параметров любого полупроводника, определяющим его поведение при приложении внешних воздействий различного типа, является ширина запрещенной зоны (энергия, необходимая электрону, для перехода из зоны валентности в зону проводимости). Имея в своем распоряжении материалы с различными значениями ширины запрещенной зоны, можно формировать гетеропереходы с существенно различающимися свойствами. В общем случае это позволяет создавать как выпрямляющие переходы на структурах с одинаковым типом проводимости (nn-n+n+, pp-p+p+), так и омические (невыпрямляющие) анизотипные pp-nn-переходы.

Билет 17.

1) Зависимость толщины обеднённого слоя p-n перехода от приложенного напряжения. Барьерная емкость. C-V характеристики.

В высокоомном обедненном слое p-n перехода по обе стороны от его границы существуют равные по значению и противоположные по знаку объемные заряды: отрицательный в p –области, положительный - в n-области. Эти заряды обусловлены наличием ионов примесей Nd и Na (рис. 4.7), а при подаче прямого смещения на переход – дополнительными зарядами, возникшими в процессе инжекции неосновных носителей заряда. В зависимости от приложенного напряжения изменяется толщина обедненного слоя и, следовательно, значения зарядов Q. Это указывает на то, что p-n переход обладает электрической емкостью ,C = dQ/dU где U – контактная разность потенциалов в p-n переходе. В общем случае емкость p-n перехода складывается из двух составляющих: С=Сбар+Сдф, (4.13) где Сбар – барьерная емкость p-n перехода при подаче на него обратного напряжения Uобр; Сдф – диффузионная емкость, возникает при подаче на p-n переход прямого напряжения Uпр.

Барьерная (зарядная) емкость определяется изменением нескомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. , где S – площадь перехода .