Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_ekzamen_po_biologii.docx
Скачиваний:
369
Добавлен:
24.06.2018
Размер:
921.08 Кб
Скачать

Генетика

13. Генетика – как наука: цели, задачи, объекты и методы изучения. Уровни изучения генетических явлений. Основные направления и этапы развития генетики с 1900 года. Роль отечественных и зарубежных ученых. Основные понятия генетики. Значение генетики для медицины.

Предмет, задачи и методы генетики.

Генетика - наука об основных закономерностях наследственности и изменчивости.

Наследственность - это свойство живых организмов приобретать в процессе онтогенеза признаки сходные с родительскими организмами и передавать из поколения в поколение особенности морфологии, биохимии, физиологии и онтогенеза в определенных условиях среды.

Наследование – процесс передачи наследственной информации от одного поколения организмов к другому.

Изменчивость – свойство живых организмов приобретать в процессе онтогенеза некоторые отличия признаков от родительских организмов.

Наследственность и изменчивость реализуются в процессе наследования (через половые клетки при половом размножении, либо через соматические при бесполом размножении). Элементарными дискретными единицами наследственности (материальными основами) являются гены.

Ген - это участок молекулы ДНК (РНК - у некоторых вирусов), определяющий последовательность нуклеотидов в молекуле РНК, последовательность аминокислот в полипептиде и, в конечном итоге, какой-либо признак организма.

Свойства генов:

- специфичность (каждый ген обладает только ему присущим порядком расположения нуклеотидов);

- целостность (при программировании синтеза полипептида он выступает как неделимая единица);

- дискретность (определяется наличием в нем субъединиц - мутон, рекон);

- стабильность (редко мутирует, частота спонтанной мутации – 10-5);

- лабильность (способность мутировать);

- плейотропность (множественность действия) т.е. один ген отвечает за проявление нескольких признаков.;

- экспрессивность (степень фенотипического проявления гена);

- пенентрантность (частота проявления гена).

Предмет генетики - изучение материальных основ наследственности (генов) на молекулярно-генетическом, субклеточном, клеточном, организменном и популяционно-видовом уровнях организации живого.

Задачи генетики:

  1. изучение способов хранения генетической информации (у вирусов, бактерий, растений, животных и человека);

  2. анализ способов передачи наследственной информации от одного поколения клеток и организмов к другому;

  3. выявление механизмов и закономерностей реализации генетической информации в процессе онтогенеза и влияние на них условий среды обитания;

4) изучение закономерностей и механизмов изменчивости и ее роли в приспособлении организмов и эволюционном процессе;

5) изыскание способов исправления поврежденной генетической информации.

Методы генетики:

  1. Метод гибридологического анализа (разработан Г. Менделем на самоопыляемом растении – горохе).

Сущность:

  • анализ наследования проводится по отдельным признакам;

  • прослеживается передача этих признаков в ряду поколений;

  • проводится точный количественный учет наследования каждого признака и характер потомства каждого гибрида.

Метод позволяет выявить закономерности наследования отдельных признаков при половом размножении организмов.

  1. Цитогенетический метод - изучение кариотипа (набор хромосом) клеток при помощи микроскопической техники и выявлять геномные (изменение числа хромосом) и хромосомные (изменение структуры хромосом) мутации.

В 1956 г. шведские ученые Дж. Тийо и А. Леван установили, что нормальный кариотип человека включает 46 хромосом. Благодаря культивированию клеток (лейкоциты периферической крови) и дифференциальной окраски хромосом возможно изучение кариотипа.

  1. Генеалогический метод - изучение родословных. Позволяет устанавливать тип наследования признака (доминантный или рецессивный, сцепленный с полом или аутосомный), зиготность организмов и вероятность проявления признаков в будущих поколениях.

Генеалогическим методом доказано наследование многих заболеваний (гемофилии, дальтонизма, брахидактилии и др.). Благодаря родословной удалось проследить наследование гена гемофилии, начиная от английской королевы Виктории – носительницы этой болезни.

  1. Близнецовый метод - изучение наследования признаков у близнецов (основоположник английский антрополог и психолог Ф. Гальтон, 1876 г.).

Близнецы – потомки одних родителей, которые развиваются совместно за 1 беременность.

Монозиготные (однояйцевые, их у человека около 35-38% от общего количества) – близнецы, развивающиеся из одной зиготы, при дроблении которой образуются бластомеры, которые затем обособляются и из них развиваются самостоятельные организмы. Имеют 100 %-ное сходство генотипа и почти 100 %-ное сходство фенотипа.

Дизиготные ( разнояйцевые) – близнецы, развивающиеся одновременно из 2-х разных зигот. Имеют сходство генотипа около 50 % и похожи друг на друга, как обычные братья и сёстры.

Метод позволяет выявить роль наследственности и внешней среды в формировании признаков.

  1. Биохимические методы основаны на исследовании биологических жидкостей (крови, мочи, амниотической жидкости) для изучения активности ферментов и химического состава клеток, который определяется наследственностью. Методы выявляют генные мутации и гетерозиготное носительство рецессивных генов.

Ранняя диагностика заболеваний и применение диет на первых этапах постэмбрионального развития позволяют излечить или облегчить заболевание.

  1. Популяционно-статистический метод основан на законе Харди-Вайнберга и позволяет рассчитать частоту встречаемости генов и генотипов в популяциях.

  2. Методы моделирования:

  • Математическое (создание математических моделей наследственных заболеваний)

  • Биологическое - основано на законе гомологических рядов наследственной изменчивости. На животных создают модели наследственных болезней, разрабатывают методы диагностики, лечения и затем полученные данные применяются к человеку.

  1. Дерматоглифический метод ( греч. derma – кожа, gliphe – рисовать) – это изучение рельефа кожи на пальцах, ладонях и подошвах стоп. Это эпидермальные выступы – гребни, образующие строго индивидуальные узоры. Ф. Гальтон классифицировал эти узоры (петли, завитки, дуги). Разделы дерматоглифики: а) дактилоскопия – изучение узоров на подушечках пальцев; б) пальмоскопия – изучение узоров на ладонях; в) плантоскопия – изучение узоров подошвенной поверхности стопы.

Закладка узоров: между 10 – 19 неделями внутриутробного развития – закладка узоров на подушечках пальцев; в 20 недель – узор хорошо различим; к шести месяцам – полное формирование узоров.

Значение дерматоглифических исследований: определение зиготности близнецов; диагностика некоторых наследственных заболеваний; в судебной медицине; в криминалистике для идентификации личности; в клинической генетике для подтверждения диагноза хромосомных синдромов.

  1. Методы рекомбинантной ДНК позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и их сегменты и устанавливать в них последовательность нуклеотидов. Метод используется для выявление генных мутаций.

Основоположник генетики - Г. Мендель, который в 1865 году в работе «Опыты над растительными гибридами» открыл основные закономерности наследования признаков (объект исследования – садовый горох – легко культивируется, неприхотлив, самоопылитель, дает многочисленное потомство; из 34 сортов гороха выбрал 22, отличающихся по 7 признакам: желтая или зеленая окраска семян, гладкая или морщинистая их поверхность, фиолетовые или белые цветки, их пазушное или верхушечное размещение, высокие (до 2 м) или низкие (до 60 см) стебли, зеленые или желтые, вздутые или сжатые с перетяжками плоды).

До Менделя: в 1694г. Р. Камерариус заложил основы гибридизации у растений (обнаружил мужские и женские органы у растений и предположил, что для образования плодов необходимо опыление); в 1760г. немецкий ученый И.Г. Кельрейтер осуществил первые опыты по искусственной гибридизации у растений и доказал, что в формировании признаков у потомков принимают участие оба родителя. Семена от растений двух сортов дают растения, называемые гибридами, у которых одни признаки доминируют над другими; в конце XVIII в. англичанин Т. Найт обнаружил, что у гибридов первого поколения признаки одного родителя в количественном отношении преобладают над признаками другого; в середине XIX в. французские ботаники О. Сажре и Ш. Ноден обнаружили, что при скрещивании разных сортов тыквы с различающимися признаками (желтая и белая мякоть плодов и желтые и белые семена) у гибридов первого поколения проявляются признаки только одного из родителей (доминантные).

Таким образом, к середине XIX в. – обнаружены явления перекомбинации наследственных задатков при гибридизации, однако механизмы этого явления не выявлены, т.к. одновременно изучалось наследование нескольких признаков.

В 1900 году Корренс (Германия) на маке, Чермак (Австрия) на дурмане, де Фриз (Голландия) на энотере переоткрыли законы г. Менделя.

Термин «генетика» был предложен в 1906 году Бэтсоном.

Значение для медицины. Первые генетические представления формировались в связи с сельскохозяйственной и медицинской деятельностью людей. Историче­ские документы свидетельствуют, что уже 6000 лет назад в животно­водстве составлялись родословные (рис. 27). Наблюдения о наследуе­мых патологических признаках, например повышенной кровоточивости у лиц мужского пола, отражены в религиозных документах, в частно­сти, в Талмуде (4—5 век до н. э.). Развитие племенного дела и семено­водства во второй половине XIX века, опубликование Ч. Дарвином учения о происхождении видов стали стимулами к изучению явлений наследственности и изменчивости. Совершается ряд открытий, за­нявших в последующем важное место в системе генетических знаний. Так, описывается непрямое деление соматических клеток, обращается внимание на особые ядерные структуры хромосомы, устанавливается постоянство их числа и индивидуальных морфологических черт в клетках организмов одного вида, а также редукция числа хромосом

вдвое при образовании половых клеток. В 1865 г. Г. Мендель опублико­вал работу «Опыты над растительными гибридами», в которой сформулировал ряд фундаментальных генетических законов.

Официальной датой рождения генетики считают 1900 г., когда были опубликованы данные Г. де Фриза, К. Корренса и К. Чермака, фактиче­ски переоткрывших закономерности наследования признаков, установлен­ные Г. Менделем, и сделавшие их до­стоянием науки. Первые десятилетия XX века оказались исключительно плодотворными в развитии основных положений и направлений генетики. Было сформулировано представление о мутациях (Г. де Фриз), популяциях и чистых линиях организмов (В. Иоганнсен), хромосомная теория наслед­ственности (Т. Г. Морган), открыт закон гомологичных рядов (Н. И. Вавилов), получены данные о том, что рентгеновские лучи вызывают наслед­ственные изменения (Г. С. Филиппов, Г. Меллер). Высказывается предполо­жение о том, что химическую основу гена составляют биологические макро­молекулы (Н. К. Колыши), указывается на связь между генами и ферментами (А. Гаррод). Была начата разработка основ генетики популяций организмов (Г. Гарди, В. Вайнберг, С. С. Четвериков). Устанавливается наследственная природа и проводится Клинический анализ некоторых наследственных заболеваний. Разрабатывается методика медико-генетического консультирования населения (С. Н. Дадиденксш).

Решающее значение для развития генетики на настоящем этапе имеют открытие «вещества наследственно­сти» — ДНК, расшифровка биологи­ческого кода, описание механизма биосинтеза белка.

Основные направления генетики человека. Исторически интерес медицины к генетике формировался первоначально в связи с наблюдениями за наследуе­мыми патологическими признаками. Во второй половине XIX века англий­ский биолог Ф. Гальтон выделил наследственность человека как самостоятельный предмет ис­следования. Он же предложил ряд специальных методов генетического анализа — генеалогический, близнецо­вый, статистический. Изучение закономерностей наследования нормальных и патологических признаков и сейчас занимает ведущее место в генетике человека. При этом предметом непосредственного изучения служат как качественные (дискретные), так и количественные показатели организма. Долгое время маркерами в исследованиях генетических закономерностей были морфологические или клинические признаки. Обнаружение взаимосвязи между генами и ферментами привело к созданию биохимической и молекулярной генетики. Тот факт, что белок является первичным продуктом функциональной активности гена, обусловило интенсивное развитие этого направления в наши дни. Аналогично объясняется прогресс иммуногенетики, изучающей генетические основы иммунных реакций организма человека. Выяснение первичного биохимического нарушения, приводящего через ряд промежуточных этапов к наслед­ственному заболеванию, облегчает поиск путей коррекции соответству­ющих клинических проявлений. Так, заболевание фенилкетонурия, обусловленное недостаточным синтезом фермента фенилаланингидроксилазы и, следовательно, нарушенным обменом аминокислоты фенилаланина, поддается лечению, если из пищи исключить эту амино­кислоту. Наряду с наследственными болезнями выявлены заболевания с наследственным предрасположением (сахарный диабет, язвенная и гиперто­ническая болезни, некоторые формы психических болезней). Изучение соотносительной роли генетических факторов и факторов среды в развитии заболеваний с наследственным предрасположением пред­ставляет собой один из ведущих разделов меди ц и некой генетики.

Наследственные болезни и заболевания с генетической предрасполо­женностью зависят от наличия неблагоприятных аллелей генов или их сочетаний. Популяционная генетика изучает распределе­ние аллелей отдельных генов в группах людей, закономерности изменения этого распределения во времени и по территории, причины неравномерного распределения аллелей. Это позволяет прогнозировать число некоторых наследственных заболеваний в поколениях и целе­направленно планировать медицинские мероприятия. Так, аллель, обусловливающий развитие фенилкетонурии, о которой шла речь выше, встречается существенно чаще в генотипах ирландцев и шотландцев, чем англичан. При этом предки многих семей, например из юго-восточной Англии, в которых наблюдаются больные фенилкетонурией, - также выходцы из Ирландии и Шотландии. Большая или меньшая заболеваемость болезнью с наследственным предрасположе­нием (степень риска) в различных группах людей также может зависеть от неравномерного распределения в популяциях тех или иных аллелей. К развитию ишемической болезни сердца предрасполагает, например, повышенное содержание в крови холестерина. Этот признак контроли­руется доминантным аллелем определенного гена. У лиц с названным аллелем рано (до 30 лет) появляются приступы стенокардии, к 50-ти годам у них развивается ишемическая болезнь сердца и около половины подобных больных к 60-ти годам погибает.

В эукариотических клетках гены распределены между хромосомами. Разработка методов хромосомного анализа, изучение структурно-функциональных характеристик хромосом, их картирование по присут­ствию генов, выяснение роли отдельных хромосом в индивидуальном развитии составляют задачи цитогенетики. Достижения цито-генетики используются для диагностики и изучения хромосомных болезней, которые представляют собой пороки развития вследствие изменений в клетках числа хромосомных наборов, количества хромосом или их структуры.

Изменения в генетическом материале могут возникнуть под воздействием факторов окружающей среды, которые необходимо исследовать на мутагенное действие. Важными разделами этого направления являются радиационная генетика и исследо­вания по мутагенному действию химических соединений. Значение последнего раздела видно из того факта, что около 10% веществ, ежегодно поступающих в обращение в виде средств борьбы с насекомы­ми, промышленных соединений, лекарств, пищевых добавок, способны вызывать в клетках человека мутации.

Индивидуальные и групповые особенности реакций людей, различающихся генетически, на терапевтические воздействия изучает фармакогенетика. Она вскрывает наследственные факторы изменчивости, эффективности и выраженности побочных действий лекарств у разных лиц.

Наряду с проблемами генетики человека существенный вопрос для медицины представляют генетические вопросы биологии возбудителей инфекционныхзаболеваний вирусов, бактерий. Важное место занимают проблемы изменчивости и разнообразия штаммов (разновидностей) возбудителей, выработки иммунитета, устойчивости к антибиотикам и другим лекарственным препаратам. Изучение генетики микроорга­низмов имеет большое значение в микробиологической промышленно­сти для организации производства биохимических продуктов путем синтеза их подходящими штаммами бактерий. Генетика человека - изучает закономерности наследования нормальных и патологических признаков человека.

Человек является сложным объектом генетических исследований и

  • имеет ряд недостатков:

1. малое количество потомков,

2. позднее половое созревание,

3. большое количество хромосом,

4. невозможность экспериментирования,

5. невозможность создания одинаковых условий жизни,

  1. медленная смена поколений.

  • преимущества перед другими объектами генетических исследований:

  1. лучше всех других объектов изучен клинически,

  2. существует международное сотрудничество генетиков,

  3. большое количество методов:

  • основные (генеалогический, близнецовый, цитогенетический, популяционно-статистический, биохимический, моделирования, методы рекомбинантной ДНК - клонирование ДНК и гибридизация нуклеиновых кислот)

  • экспресс-методы – методы предварительной диагностики. Помогают выбрать из большого числа людей тех лиц, у которых есть некоторые отклонения от обычных показателей, чтобы в дальнейшем тщательно обследовать их другими методами.

  • дородовой диагностики позволяют установить наследственные дефекты плода на ранних стадиях беременности.

Раздел генетики человека, изучающий наследственные болезни, называется медицинской генетикой. В настоящее время известно более 4000 наследственных заболеваний человека:

  • болезни, связанные с изменением числа хромосом. Пример: синдром Дауна - лишняя 21-я хромосома. Для них характерно слабоумие, узкие глазные щели, низко расположенные уши, пороки внутренних органов, сниженная жизнеспособность.

  • наследственные заболевания обмена веществ. Пример: фенилкетонурия (в организме накапливается ФПВК, которая поражает нервные клетки, вследствие чего наблюдается прогрессирующая умственная отсталость).

  • болезни, связанные с изменением структуры хромосом. Пример: синдром кошачьего крика. Для таких больных характерно лунообразное лицо, патология гортани (поэтому все звуки напоминают кошачье мяуканье), пороки внутренних органов, сниженная жизнеспособность.

Одна из основных задач генетики человека заключается в ранней диагностике наследственных заболеваний, разработке методов лечения и профилактике наследственных болезней.

Важным направлением в профилактике наследственных заболеваний является медико-генетическое консультирование, задачами которого являются:

1. Повышение генетической грамотности населения.

2. Выявление генетически опасных факторов внешней среды и разработка методов их нейтрализации.

3. Составление прогноза рождения больного ребенка у обратившейся в консультацию супружеской пары.

Медико-генетические консультации есть в каждом областном центре. Использование методов дородовой диагностики позволяет прервать беременность по медицинским показаниям.

  1. Основные законы генетики и их цитологические механизмы.

Основные закономерности наследования были открыты Менделем. По уровню развития науки своего времени Мендель не мог еще связать наследственные факторы с определенными структурами клетки. Впоследствии было установлено; что гены находятся в хромосомах, поэтому при объяснении закономерностей, полученных Менделем, мы будем исходить из современных представлений на клеточном уровне. Мендель достиг успеха в своих исследованиях благодаря совершенно новому, разработанному им методу, получившему название гибридологического анализа. Основные положения этого метода следующие:

1. Учитывается не весь многообразный комплекс признаков у родителей и гибридов, а анализируется наследование по отдельным альтернативным признакам.

2. Проводится точный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений: прослеживается не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности. Гибридологический метод нашел широкое применение в. науке и практике.Скрещивание, в котором родительские особи анализируются по одной альтернативной паре признаков, называется моногибридным, по двум - дигибридным, по многим альтернативным парам - полигибридным. Прежде всего следует ознакомиться со способом наследования на примере моногибридного скрещивания.

Моногибридное скрещивание. Правило единообразия гибридов первого поколения.

при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Правило расщепления, при скрещивании двух гетерозиготных особей, т.е. гибридов, анализируемых по одной альтернативной паре признаков, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу 1: 2: 1.

Гипотеза «чистоты гамет» Правило расщепления показывает, что хотя у гетерозигот проявляются лишь доминантные признаки, однако рецессивный ген не утрачен, более того, он не изменился. Следовательно, аллельные гены, находясь в гетерозиготном состоянии, не сливаются, не разбавляются, не изменяют друг друга. Эту закономерность Мендель назвал гипотезой «чистоты гамет». В дальнейшем эта гипотеза получила цитологическое обоснование. Вспомним, что в соматических клетках диплоидный набор хромосом. В одинаковых местах (локусах) гомологичных хромосом находятся аллельные гены. Если это гетерозиготная особь, то в одной из гомологичных хромосом расположен доминантный аллель, в другой .- рецессивный. При образовании половых клеток происходит мейоз и в каждую из гамет попадает лишь одна из гомологичных хромосом. В гамете может быть лишь один из аллельных генов. Гаметы остаются «чистыми», они несут только какой-то один из аллелей, определяющий развитие одного из альтернативных признаков.

Доминантные и рецессивные признаки в наследственности человека. В генетике человека известно много как доминантных, так и рецессивных признаков. Одни из них имеют нейтральный характер и обеспечивают полиморфизм в человеческих популяциях, другие приводят к различным патологическим состояниям. Но при этом следует иметь в виду, что доминантные патологические признаки как у человека, так и у других организмов, если они заметно снижают жизнеспособность, сразу же будут отметены отбором, так как носители их не смогут оставить потомства. Наоборот, рецессивные гены, даже заметно снижающие жизнеспособность, могут в гетерозиготном состоянии длительно сохраняться, передаваясь из поколения в поколение, и проявляются лишь у гомозигот.

  1. Генотип как целостная система. Формы взаимодействия аллельных и неаллельных генов.

Свойства генов. На основании знакомства с примерами наследования признаков при моно- и дигибридном скрещиванииможет сложиться впечатление, чтогенотипорганизма слагается из суммы отдельных, независимо действующих генов, каждый из которых определяет развитие только своего признака или свойства. Такое представление о прямой и однозначной связи гена с признаком чаще всего не соответствует действительности. На самом деле существует огромное количество признаков и свойств живых организмов, которые определяются двумя и более парами генов, и наоборот, одингенчасто контролирует многие признаки. Кроме того, действие гена может быть изменено соседством других генов и условиями внешней среды. Таким образом, вонтогенезедействуют не отдельные гены, а весьгенотипкак целостная система со сложными связями и взаимодействиями между ее компонентами. Эта система динамична: появление в результате мутаций новых аллелей или генов, формирование новых хромосом и даже новых геномов приводит к заметному изменению генотипа во времени.

Характерпроявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедится, если рассмотреть свойства генов и особенности их проявления в признаках:

  1. Гендискретен в своем действии, т. е. обособлен в своей активности от других генов.

  2. Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.

  3. Ген может действовать градуально, т. е. усиливать степень проявления признака при увеличении числа доминантных аллелей (дозы гена).

  4. Один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена.

  5. Разные гены могут оказывать одинаковое действие на развитие одного и того же признака (часто количественных признаков) — это множественные гены, или полигены.

  6. Ген может взаимодействовать с другими генами, что приводит к появлению новых признаков. Такое взаимодействие осуществляется опосредованно — через синтезированные под их контролем продукты своих реакций.

  7. Действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или воздействием различных факторов внешней среды.

  1. Иммуногенетика: наследование антигенных систем HLA, АВО, резус фактора. Значение для медицины. Генетические и иммунологические основы гемолитической болезни новорожденных. Профилактика последствий несовместимости между матерью и плодом.

Наука иммуногенетика изучает законы наследования антигенных систем, изучает наследственные факторы иммунитета, внутривидовое разнообразие и наследование тканевых антигенов, генетические и популяционные аспекты взаимоотношений макро и микро организмов и тканевой несовместимости. Термин предложил Ирвин. Антиген – продукт активности генов, белковое вещество, встроенное в мембрану клетки, определяет индивидуальность организма. При введении в чужой организм вызывают спец.реакцию реагирующих с ними антителами. Антитела- белки, относящиеся к гамма-глобулинам, содержащимся в крови. Синтезируются в-лимфоцитами.( Врожденные антитела характерны только для АВ0 системы)

Иммуногенетика - раздел иммунологии, занятый изучением четырех основных проблем:

1) генетики гистосовместимости ;

2) генетического контроля структуры иммуноглобулинов и других иммунологически значимых молекул;

3) генетического контроля силы иммунного реагирования и

4) генетики антигенов .

Первая из этих проблем связана с направлением исследований, задачи которого - познание причин несовместимости тканей при внутривидовых пересадках - родилось в 30-е годы. Экспериментальные усилия привели к открытию комплекса генов, контролирующих поверхностные клеточные структуры - молекулы (антигены) гистосовместимости , - которые и вызывают иммунную реакцию отторжения чужеродной ткани. (Основные вопросы, связанные со структурой и функциями этих молекул рассматривались ранее (см. " Главный комплекс гистосовместимости (MHC) ". В этой же главе основное внимание уделено освещению отдельных вопросов генетики гистосовместимости).

Вторая проблема иммуногенетики связана с изучением геномной организации иммуноглобулинов. Она возникла после выяснения особенностей молекулярной организации антител и разработанных в середине 60-х годов чисто теоретических представлений о генетических основах их структур. (Вопросы генетического контроля структуры иммуноглобулинов также уже рассматривались и в данном разделе не обсуждаются (см. " ГЕНОМНАЯ ОРГАНИЗАЦИЯ Ig И ТКР ").

Изучение генетического контроля силы иммунного ответа (третья из перечисленных выше проблем) как самостоятельного направления исследований началось тоже в 60-е годы и вскоре слилось с проблемой, направленной на выяснение механизмов распознавания антигена Т-клетками .

В начале нашего столетия К.Ландштейнером была открыта система АВО групп крови человека. В это же время П.Наттол провел сравнительные изучение антигенных свойств белков сыворотки крови у человека и обезьян. Эти работы привели к формированию задач, целью которых стало выявление функций и характера наследования антигенов клеток, тканей, жидкостей организма. Основной прием состоял в использовании антител, специфичных к искомому антигену. Антитела получали из сыворотки крови иммунизируемых лабораторных животных. В силу методического приема все направление исследований получило название серологии антигенов . (Изучение наследования этих антигенов составляет самостоятельную главу в иммуногенетике и в данном разделе не рассматривается).

Мед.значение:

При переливании, при решении спорного отцовства, для установления зиготности близнецов, картирование хромосом, установление групп сцепления, установлены ассоциации антигенов АВ0 с различными заболеваниями, конфликт про системе АВ0.

Система гистосовместимости(HLA) лейкоцитарные антигены человека, открыта в 1958 году. Эта система представлена белками 2 классов, гены кодирующие эту систему локализуются в коротком плече 6 хромосомы. Эта система полиморфна. Учитывается при трансплантологии, нужно совпадение хотя бы 3 антигенов. В течении всей жизни набор антигенов не меняется.

Гемолитическая болезнь новорожденных

Еще несколько лет назад считали, что гемолитическая болезнь у новорожденного может быть обусловлена только Rh-несовместимостью. В настоящее время известно, что в 30% и более она связана с А или В групповой несовместимостью крови, т. е. с изоиммунизацией в системе AB0. При АВ0-несовместимости у ребенка группа крови А или В, а у матери группа крови 0. Случаи с А группой крови наблюдаются приблизительно в 4 раза чаще, чем с группой крови В, что соответствует нормальному соотношению групп крови. Zuelzer считает, что дети с группой крови А фактически принадлежат к группе крови А2 и реже к группе крови А2. В отличие от Rh-несовместимости при АВ0-системе дети обычно подвергаются неблагоприятному воздействию еще при первой беременности. Антитела при АВ0-несовместимости существуют предварительно, а при Rh-несовместимости необходима предварительная сенсибилизация. Предполагается, что изоиммунизации обусловливается недоказанным фактором С, который содержится только в эритроцитах групп А, В или АВ, но не в 0 группе. При АВ0-несовместимости агглютиноген А или В содержится в эритроцитах ребенка в отсутствует у матери. Сыворотка матери содержит изоагглютинины, которые агглютинируют эритроциты ребенка и вызывают гемолиз. Мать может быть иммунизирована различными способами: при гетерогемотерапии, плазмотерапии и особенно при гетероспецифической беременности. Механизм подобен Rh-изоиммунизации. Разница в том, что антиген содержится не только в самих эритроцитах, но и в плацентарных клетках десквамированного эпителия амниотической жидкости. Антигены существуют не только в человеческом организме. Этим можно объяснить изоиммунизацию после противодифтерийной вакцинации, после введения дифтерийной и других сывороток и введения медикаментов животного происхождения. Гемолитическая болезнь не всегда развивается, а только при титре антител выше 1 : 64, достигающем иногда до 1 : 1024 и выше. Интересно отметить, что при одновременной АВ0- и Rh-несовместимости редко наступает Rh-сенсибилизация у плода. Резус-положительные эритроциты плода в этих случаях сразу после поступления их в кровообращение матери разрушаются нормальными анти-А- или анти-В- антителами, при этом антигенные свойства Rh-фактора теряются.

В женской консультации беременную обязательно проверяют на резус-фактор. Если он отрицательный, необходимо определить резусную принадлежность отца. При риске резус-конфликта (у отца положительный резус-фактор) кровь женщины неоднократно за время беременности исследуется на наличие резус - антител. Если их нет, значит, женщина не сенсибилизирована и в эту беременность резус-конфликта не произойдет. Сразу после родов определяют резус-фактор у младенца. Если он положительный, то не позднее 72 часов после родов матери вводят антирезусный иммуноглобулин, который предупредит развитие резус-конфликта в последующую беременность. Вы поступите благоразумно, если, отправляясь в роддом, захватите с собой анти-Д-иммуноглобулин (разумеется, если у вас отрицательный резус фактор).

Такую же профилактику иммуноглобулином резус-отрицательные женщины должны проводить в течение 72 часов после:

.внематочной беременности

. аборта

.выкидыша

.переливания резус-положительной крови

.переливания тромбоцитарной массы

.отслойки плаценты

. травмы у беременной

. амниоцентеза, биопсии хориона (манипуляции на плодных оболочках)

  1. Понятие «доза гена» в генотипе. Генотип как сбалансированная по дозам генов система. Типы наследования признаков и доза генов необходимая для их проявления (моно- и полигенное наследование). Признаки, контролируемые одной или двойной дозой, несколькими двойными дозами генов.

Доза гена – это количество копий данного гена в расчете на ядро одной клетки; в норме доза гена  равна равна числу гомологичных хромосом, на которых данный ген локализован, - при этом доза гена может быть выше уровня плоидности (трисомия) или ниже (половые хромосомы у гетерогаметного пола, моносомия).

Доза гена – число копий в геноме или генотипе. Одно из свойств гена – дозированность действия: признак выражен тем сильнее, чем больше генов в генотипе

  1. Основные положения хромосомной теории наследственности. Хромосомы как группы сцепления генов. Локализация некоторых генов в хромосомах человека. Генетические, цитологические и секвенсовые карты хромосом. Научное значение картирования хромосом.

Хромосомная теория наследственности. Правила постоянства числа, парности, индивидуальности и непрерывности хромосом, сложное поведение хромосом при митозе и мейозе давно убедили исследователей в том, что хромосомы играют большую биологическую роль и имеют прямое отношение к передаче наследственных свойств. В предыдущих разделах уже были даны цитологические объяснения закономерностей наследования, открытых Менделем. Роль хромосом в передаче наследственной информации была доказана благодаря; а) открытию генетического определения пола; б) установлению групп сцепления признаков, соответствующих числу хромосом;

в) построению генетических, а затем и цитологических карт хромосом.

Наследование пола и хромосомы. Одним из первых и веских доказательств роли хромосом в явлениях наследственности явилось открытие закономерности, согласно которой пол наследуется как менделирующий признак, т.е. наследуется по законам Менделя.Известно, что хромосомы, составляющие одну гомологичную пару, совершенно подобны друг другу, но это справедливо лишь в отношении аутосом. Половые хромосомы, или гетерохромосомы, могут сильно разниться между собой как по морфологии, так и по заключенной в них генетической информации. Сочетание половых хромосом в зиготе определяет пол будущего организма. Большую из хромосом этой пары принято называть X (икс)-хромосомой, меньшую - Y (игрек)-хромосомой. У некоторых животных Y-хромосома может отсутствовать. У всех млекопитающих (в том числе у человека), у дрозофилы и многих других видов животных женские особи в соматических клетках имеют две X-хромосомы, а мужские - Х- и Y-хромосомы. У этих организмов все яйцевые клетки содержат Х-хромосомы, и в этом отношении все одинаковы. Сперматозооны у них образуются двух типов: одни содержат Х-хромосому, другие Y-хромосому, поэтому при оплодотворении возможны две комбинации:

1. Яйцеклетка, содержащая Х-хромосому, оплодотворяется сперматозооном тоже с Х-хромосомой. В зиготе встречаются две Х-хромосомы. Из такой зиготы развивается женская особь.

2. Яйцеклетка, содержащая Х-хромосому, оплодотворяется сперматозооном, несущим Y-хромосому. В зиготе сочетаются Х- и Y-хромосомы. Из такой зиготы развивается мужской организм.

Пол, имеющий обе одинаковые половые хромосомы, называется гомогаметмым, так как все гаметы одинаковые, а пол с различными половыми хромосомами, при котором образуются два типа гамет, называется гетерогаметным. Наследование, сцепленное с полом. Признаки, наследуемые через половые хромосомы, получили название сцепленных с полом. У человека признаки, наследуемые через Y-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосому - у лиц как одного, так и другого пола. Лицо женского пола может быть как гомо-, так и гетерозиготным по генам, локализованным в Х-хромосоме, а рецессивные аллели генов у него проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, все локализованные в ней гены, даже рецессивные, сразу же проявляются в фенотипе. Такой организм называют гемизиготным.

При записи схемы передачи признаков, сцепленных с полом, в генетических формулах наряду с символами генов указывают и половые хромосомы. Признаки, которые наследуются через Y-хромосому, получили название голандрических. Они передаются от отца всем его сыновьям. К числу таких у человека относится признак, проявляющийся в интенсивном развитии волос на крае ушной раковины.

Сцепление генов а кроссинговер. Во всех примерах скрещивания, которые приводились выше, имело место независимое комбинирование генов, относящихся к различным аллельным парам. Оно возможно только потому, что рассматриваемые нами гены локализованы в различных парах хромосом. Однако число генов значительно превосходит число хромосом. Следовательно, в каждой хромосоме локализовано много Генов, наследующихся совместно. Гены, локализованные в одной хромосоме, называются группой сцепления. Понятно, что у каждого вида организмов число групп сцепления равняется числу пар хромосом, т. е. у дрозофилы их 4, у гороха - 7., у кукурузы - 10, у томата - 12 и т. д. Следовательно, установленный Менделем принцип независимого наследования и комбинирования признаков проявляется только тогда, когда гены, определяющие эти признаки, находятся в разных парах хромосом (относятся к различным группам сцепления). Однако оказалось, что гены, находящиеся в одной хромосоме, сцеплены не абсолютно. Во время мейоза, при конъюгации хромосом гомологичные хромосомы обмениваются идентичными участками. Этот процесс получил название кроссинговера, или перекреста. Кроссинговер может произойти в любом участке хромосомы, даже в нескольких местах одной хромосомы. Чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.

Обмен. участками между гомологичными хромосомами имеет большое значение для эволюции, так как непомерно увеличивает возможности комбинативной изменчивости. Вследствие перекреста отбор в процессе эволюции идет не по целым группам сцепления, а по группам генов и даже отдельным генам. Ведь в одной группе сцепления могут находиться гены, кодирующие наряду с адаптивными (прнспособительными) и неадаптивные состояния признаков. В результате перекреста «полезные» для организма аллели могут быть отделены от «вредных» и, следовательно, возникнут более выгодные для существования вида генные комбинации - адаптивные. Примером тесного сцепления генов у человека может служить наследование резус-фактора. Оно обусловлено тремя парами генов С, Д, К., тесно сцепленных между собой, поэтому наследование его происходит по типу моногибридного скрещивания. Резус-положительный фактор обусловлен доминантными аллелями. Поэтому при браке женщины, имеющей резус-отрицательную группу крови, с мужчиной, у которого резус-фактор положительный, если он гомозиготен, все дети будут резус-положительными; если гетерозиготен, следует ожидать расщепления по этому признаку в соотношении

Точно так же близко расположены в Х-хромосоме гены гемофилии и дальтонизма. Если уж они есть, то наследуются вместе, а находящиеся в той же хромосоме гены альбинизма локализованы на значительном расстоянии от гена дальтонизма и могут дать с ним высокий процент перекреста.

Линейное расположение генов. Генетические карты. Существование кроссинговера позволило школе Моргана разработать в 1911-1914 гг. принцип построения генетических карт хромосом. В основу этого принципа положено представление о расположении генов по длине хромосомы в линейном порядке. За единицу расстояния между двумя генами условились принимать 1 % перекреста между ними. Эту величину называют морганидой. в честь генетика Т.Г. Моргана.

Допустим, что к одной группе сцепления относятся гены А и В. Между ними обнаружен перекрест в 10%. Следовательно, эти гены находятся на расстоянии 10 единиц (морганид). Допустим далее, что к этой же группе сцепления относится ген С. Чтобы узнать его место в хромосоме, необходимо выяснить, какой процент перекреста он дает с обоими из двух уже известных генов. Например, если с А он дает 3% перекреста, то можно предположить, что ген С находится либо между А и В, либо в противоположной стороне, т.е. А расположен между С и В. В общей форме эту закономерность можно выразить следующей формулой: если гены А, В, С относятся к одной группе сцепления и расстояние между генами А и В равно k единицам, а расстояние между В и С равно l единицам, то расстояние между A и С может быть либо k+l, либо k–l.

Начато составление карт хромосом человека. Уже известны 24 группы сцепления: 22 аутосомные и 2 сцепленные с полом в Х- и Y-хромосомах. Генетические карты хромосом строятся на основе гибридологического анализа. Однако найден способ построения и цитологических карт хромосом для дрозофилы. Дело в том, что в клетках слюнных желез личинок мух обнаружены гигантские хромосомы, превышающие размеры хромосом из других клеток в 100-200 раз и содержащие в 1000 раз больше хромонем. Оказалось, что в тех случаях, когда гибридологическим методом обнаруживались какие-либо нарушения наследования, соответствующие им изменения имели место и в гигантских хромосомах. Так, в результате сопоставления генетических и цитологических данных стало возможным построить цитологические карты хромосом. Это открытие подтверждает правильность тех принципов, которые были положены в основу построения генетических карт хромосом. Метод картирования хромосом человека. Установить группы сцепления, а тем более построить карты хромосом человека, пользуясь традиционными методами, принятыми для всех других эукариотов (растений и животных), практически невозможно. Тем не менее в построении карт хромосом человека достигнут значительный прогресс, благодаря использованию нового метода- гибридизации соматических клеток грызунов и человека в культуре ткани. Оказалось, что если в культуре смешать, клетки мыши и человека, то можно получить гибридные клетки, содержащие хромосомы одного и другого вида. В норме клетки мыши имеют 40 хромосом, человека, как известно,- 46 хромосом. В гибридных клетках следует ожидать суммарное число хромосом - 86, но обычно этого не бывает и чаще всего гибридные клетки содержат от 41 до 55 хромосом. При этом, как правило, в гибридных клетках хромосомы мыши сохраняются все, а утрачиваются какие-либо хромосомы человека; потеря тех или иных из хромосом случайна, поэтому гибридные клетки имеют разные наборы хромосом. В гибридных клетках хромосомы как мыши, так и человека функционируют, синтезируя соответствующие белки. Морфологически каждую из хромосом мыши и человека можно отличить и установить, какие именно хромосомы человека присутствуют в данном конкретном наборе, и, следовательно, выяснить, синтез каких белков связан с генами данных хромосом. Гибридные клетки обычно теряют ту или иную хромосому человека целиком. Это дает возможность считать, что если какие-либо гены присутствуют или отсутствуют постоянно вместе, то они должны быть отнесены к одной группе сцепления. Этим методом удалось установить все возможные для человека группы сцепления. Далее, в ряде случаев, используя хромосомные аберрации (транслокации и нехватки), можно определить расположение генов в том или ином участке хромосом, выяснить последовательность их расположения, т. е. построить карты хромосом человека. Наибольшее число генов удалось локализовать в Х-хромосоме, где их известно 95, в наиболее крупной из аутосом – первой - 24 гена. Ген, определяющий группы крови по системе АВ0, оказался в девятой хромосоме, определяющий группы крови по системе MN - во второй, а по группе крови системы резус-фактора (Rh) - а первой хромосоме. В этой же хромосоме локализован ген элиптоцитоза (El), доминантный аллель которого кодирует овальную форму эритроцитов. Расстояние между локусами Rh и El равно 3%. Локализация патологических генов во всех хромосомах человека имеет большое значение для медицинской генетики. Основные положения хромосомной теории наследственности. Закономерности, открытые школой Моргана, а затем подтвержденные и углубленные на многочисленных объектах, известны под общим названием хромосомной теории наследственности. Основные положения ее следующие:

1. Гены находятся в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у каждого вида равно гаплоидному числу хромосом.

2. Каждый ген в хромосоме занимает определенное место (локус). Гены в хромосомах расположены линейно.

3. Между гомологичными хромосомами может происходить обмен аллельными генами.

4. Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними.

  1. Доказательства роли ДНК в передаче наследственной информации (опыты по трансформации и трансдукции у бактерий).

Генетические явления на молекулярном уровне (основы молекулярной генетики). Хромосомная теория наследственности закрепила за генами роль элементарных наследственных единиц, локализованных в хромосомах. Однако химическая природа гена долго еще оставалась неясной. В настоящее время известно, что носителем наследственной информации является ДНК.Убедительные доказательства того, что именно с ДНК связана передача наследственной информации, получены при изучении вирусов. Проникая в клетку, они вводят в нее лишь нуклеиновую кислоту с очень небольшой примесью белка, а вся белковая оболочка остается вне зараженной клетки. Следовательно, введенная в клетку ДНК передает генетическую информацию, необходимую для образования нового поколения вируса такого же вида.

Далее было обнаружено, что чистая нуклеиновая кислота вируса табачной мозаики может заразить растения, вызывая типичную картину заболевания. Более того, удалось искусственно создать вегетативные «гибриды» из вирусов, в которых белковый футляр принадлежал одному виду, а нуклеиновая кислота - другому. В таких случаях генетическая информация «гибридов» всегда в точности соответствовала тому вирусу, чья нуклеиновая кислота входила в состав «гибрида». Доказательства генетической роли ДНК были получены и в ряде опытов по заражению бактериальных клеток вирусами. Вирусы, поражающие бактерии, называют бактериофагами (или просто фагами). Они состоят из белковой капсулы правильной геометрической формы и молекулы нуклеиновой кислоты, свернутой в виде спирали. Хорошо изучен жизненный цикл у фага Т2 (ДНК-содержащий вирус), размножающегося внутри бактерии кишечной палочки. Фаг прикрепляется своим отростком к клеточной оболочке, с помощью ферментов разрушает участок клеточной мембраны и через образовавшееся отверстие вводит свою ДНК в клетку. Попав внутрь клетки, нуклеиновая кислота вируса приводит к извращению нормальной работы клетки, прекращается синтез собственных бактериальных белков, и весь контроль над биохимическим аппаратом клетки переходит к вирусной ДНК.

Из имеющихся в клетке аминокислот и нуклеотидов синтезируются белковые капсулы, идет репродукция ДНК, т. е. образуются новые зрелые фаговые частицы, их количество быстро увеличивается. Жизненный цикл фага заканчивается выходом фаговых частиц в окружающую среду и распадом клетки. Такие фаги называются вирулентными. Когда белок фага был помечен радиоактивной серой (35S), а ДНК - радиоактивным фосфором (32Р), оказалось, что вновь образованные фаги содержали только радиоактивный фосфор, которым была помечена ДНК, а частиц 35S не было обнаружено ни у одной фаговой частицы. Эти опыты наглядно показали, что генетическая информация от внедрившегося фага его потомкам передается только проникающей в клетку нуклеиновой кислотой, а не белком, содержащимся в капсуле вируса. Важные доказательства роли ДНК в передаче наследственной информации были получены на микроорганизмах в явлениях трансформации и трансдукции. Трансформация - включение чужеродной ДНК в бактериальную клетку. Это перенос наследственной информации от одной клетки прокариотов к другой посредством ДНК бактерии-донора или клетки-донора. Явление трансформации было обнаружено в опытах английского микробиолога Гриффитса (1928), работавшего с двумя штаммами пневмококка. Они отличаются по внешнему виду и болезнетворным свойствам. Штамм S имеет капсульную оболочку и отличается высокой вирулентностью. При введении этих бактерий подопытным мышам последние заболевали инфекционной пневмонией и погибали. Клетки штамма R отличаются отсутствием капсульных оболочек, при введении их животным гибели не наступало.

Если клетки вирулентного штамма подвергали действию высокой температуры, то они становились безвредными и также не вызывали заболевания. Но совершенно неожиданный результат получил Гриффитс, когда ввел мышам смесь из невирулентного и убитого нагреванием вирулентного штаммов. Подопытные животные заболели пневмонией и погибли, как и мыши, получившие инъекцию живых 5-бактерив. Из крови тех я других мышеи были выделены живые S-пневмококки. Таким образом, оказалось, что свойства убитых бактерий - наличие капсулы и способность вызывать острое заболевание (вирулентность) передались от убитых к живым бактериям, произошла трансформация штамма R в штамм S. Поскольку клетки S были убиты нагреванием, то, следовательно, фактором, вызывающим трансформацию, было вещество небелковой природы. Удалось получить трансформацию бактерий и в условиях in vitro, вне организма. Однако, что представляет собой трансформирующий фактор, в то время осталось невыясненным. Только в 1944 г. группа американских генетиков под руководством О. Эвери с помощью биохимического анализа показали, что этим фактором является ДНК. Если ДНК бактерий-доноров разрушалась ферментом дезоксирибонуклеазой, то трансформация не происходила. Эти опыты были подтверждены в отношении многих наследственных признаков у бактерий, в частности, именно этот процесс лежит в основе превращения не устойчивых к стрептомицину клеток пневмококков в стрептомициноустойчивые. Механизм трансформации заключается в рекомбинации между молекулами ДНК клеток двух штаммов. Опыты по бактериальной трансформации и расшифровке природы трансформирующего фактора имели выдающееся значение для развития молекулярной генетики, поскольку был сделан вывод, что в явлениях наследственности ведущая роль принадлежит ДНК. Расшифровка процесса бактериальной трансформации имеет и непосредственное практическое значение для медицинской микробиологии. Трансдукция (лат. transductio - перемещение) заключается в том, что вирусы, покидая бактериальные клетки, в которых они паразитировали, могут захватывать с собой часть их ДНК и, перемещаясь в новые клетки, передавать новым хозяевам свойства прежних. Это явление впервые было получено в опытах по заражению бактерий вирусами.

Долгое время считали, что взаимоотношения вируса и бактериальной клетки могут быть только приводящими бактерию к гибели. Однако впоследствии было обнаружено, что, поражая бактерию, не все фаги приводят ее к активному разрушению. Это так называемые умеренные фаги. Они могут вести себя в клетке и как вирулентные, но могут объединяться с бактериальным геномом, встраивая свою ДНК в хромосом) клетки-реципиента. В таком состоянии размножения фага не происходит, он становится профагом и реплицируется (воспроизводится) вместе с хромосомой бактерии. Бактерия остается неповрежденной, не лизируется. Такие штаммы бактерии называются лизогенными (гр. lisis - растворение), так как они несут в себе фактор, угрожающий целостности бактериальных клеток, вызывающий их разрушение, растворение.

Профаг можeт воспроизводиться вместе с бактериальной хромосомой при соблюдении постоянных внешних условий в течение многих клеточных поколений. Однако в какой-то момент профаг освобождается из хромосомы бактерии и начинает автономно реплицироваться с образованием новых фаговых частиц, т. е. профаг перешел в вирулентное состояние. При этом, освобождаясь от связи с ДНК клетки-реципиента, фаговые частицы могут случайно захватить небольшие близлежащие участки бактериальной хромосомы с находящимися в них генами. Попадая в клетки другого штамма бактерий, вирусы вносят в их геном «чужие» бактериальные гены и передают новым клеткам-хозяевам свойства тех, в которых они ранее паразитировали.

Встраивание профага происходит путем кроссинговера между фаговой и бактериальной хромосомами. Таким образом, генотип клеток-реципиентов может измениться, они приобретут какие-то свойства клеток первого штамма. Явление трансдукции было обнаружена в опытах с бактериями из различных штаммов. V-образная трубка в нижней части была разделена бактериальным фильтром. В одной половине ее находились бактерии кишечной палочки, имеющие фермент, расщепляющий лактозу и содержащие пгофаг (ген lac+), а в другой половине - штамм, не обладающий этим ферментом (ген lac-). Бактериальные клетки не могли проникать через перегородку. Через некоторое время при анализе клеток второго штамма оказалось, что среди них появились формы lac+. Перенос гена мог произойти только с помощью вируса, находившегося в лизогенном штамме и приступившего к размножению. Этот вирус, проникнув через бактериальный фильтр, внес ген lac+ в бактериальные клетки, т. е. произошла трансдукция. Процесс трансдукции является не только подтверждением генетической роли ДНК, он используется для изучения структуры хромосом, тонкого строения гена и, как будет показано ниже, является одним из важнейших методов, применяемых в генной инженерии. Итак, изучение химической структуры ДНК и ее генетических функций позволяет ныне рассматривать гены как участки нуклеиновой кислоты, характеризующиеся определенной специфической последовательностью нуклеотидов. Расшифровка материальной сущности гена - одно из важных достижений современной биологической науки.

  1. Геномика - раздел молекулярной генетики, посвящённый изучению генома и генов живых организмов. Современные представления о геноме человека: организация и характеристика генома, классификация генов в геноме. Программа «Геном человека», ее практическое значение. Успехи и научные перспективы.

Комплексное изучение структуры и функции генома привело к формированию самостоятельной научной дисциплины, названной «геномикой». Предмет этой науки -строение геномов человека и других живых существ (растений, животных, микроорганизмов и др.), задача - применить полученные знания для улучшения качества жизни человека. В рамках этой новой научной дисциплины проводятся исследования по функциональной геномике, сравнительной геномике, а также по генетическому разнообразию человека.

Важнейший элемент геномных исследований — характеристика различных генов, составляющих эти геномы, изучение механизмов их регуляции, взаимодействия друг с другом и с факторами среды в норме и при патологии. Охарактеризовать таким образом как можно большее количество генов - основная задача функциональной геномики. Анализ любого генома включает определение нуклеотидной последовательности, белковых продуктов генов, изучение взаимодействия разных генов и белков и механизма регуляции всей системы. После расшифровки генома усилия исследователей фокусируются на изучении белковых продуктов генов. Еще одно важное направление функциональной геномики — траискриптомика — изучает координированную работу генов, образование первичных транскриптов, процессы сплайсинга и формирования зрелых мРНК.

Геном человека — геномбиологического видаHomo sapiens. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две —X-хромосомаиY-хромосома— определяют пол (XY — у мужчин или ХХ — у женщин). Хромосомы в общей сложности содержат приблизительно 3 миллиарда пар основанийнуклеотидовДНК, образующих 20 000—25 000генов.

В ходе выполнения проекта «Геном человека»содержимое хромосом находящихся в стадииинтерфазав клеточном ядре (веществоэухроматин), было выписано в виде последовательности символов. В настоящее время эта последовательность активно используется по всему миру вбиомедицине. В ходе исследований выяснилось, что человеческий геном содержит значительно меньшее число генов, нежели ожидалось в начале проекта.

По результатам проекта Геном человека, количество генов в геноме человека составляет около 28000 генов. Начальная оценка была более чем 100 тысяч генов. В связи с усовершенствованием методов поиска генов (предсказание генов) предполагается дальнейшее уменьшение числа генов.

Интересно,что число генов человека не намного превосходит число генов у более простых модельных организмов, например, круглого червя  или мухи . Так происходит из-за того, что в человеческом геноме широко представленальтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческийпротеомоказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественныеэкзоны, иинтронычасто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бандами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включаятранспортную РНК,рибосомнуюРНК и прочие не кодирующие белок РНК последовательности.

Классификация генов

 1)По характеру взаимодействия в аллельной паре:

- доминантный (ген, способный подавлять проявление аллельного ему рецессивного гена);

- рецессивный (ген, проявление которого подавлено аллельным ему доминантным геном).

 2)Функциональная классификация:

- структурные

кодирующие белки

кодирующие т-РНК

кодирующие р-РНК

-рецепторные

гены-интенсификаторы (повышают активность некоторых генов)

гены-репараторы (гены, исправляюшие дефекты (мутации) ДНК)

гены-ингибиторы (подавляют антивность генов)

Проект по расшифровке генома человека - международный научно-исследовательскийпроект, главной целью которого было определить последовательностьнуклеотидов, которые составляютДНКи идентифицировать 20-25 тыс.геноввчеловеческом геноме.

Перспективы

Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается, что детальное знание человеческого генома откроет новые пути к успехам в медицинеибиотехнологии. Ясные практические результаты проекта появились ещё до завершения работы. Несколько компаний начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включаярак груди,нарушения свёртываемости крови,кистозный фиброз, заболеванияпечении многим другим. Также ожидается, что информация о геноме человека поможет поискупричин возникновениярака,болезни Альцгеймераи другим областям клинического значения и, вероятно, в будущем может привести к значительным успехам в их лечении.

Также ожидается множество полезных для биологов результатов. Например, исследователь, изучающий определённую форму ракаможет сузить свой поиск до одного гена. Посетив базу данных человеческого генома всети, этот исследователь может проверить что другие учёные написали об этом гене включая (потенциально) трёхмерную структуру его производного белка, его функции, его эволюционную связь с другими человеческими генами или с генами в мышах или дрожжах или дрозофиле, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела в которых ген активируется, заболеваниями, связанными с этим геном или другие данные.

Более того, глубокое понимание процесса заболевания на уровне молекулярной биологии может предложить новые терапевтические процедуры.

  1. Ген - функциональная единица наследственной информации. Дискретность гена (цистрон, рекон, мутон). Моно- и полицистронная модели генов. Понятие о транскриптоне и опероне, их структура (промотор, оператор, терминатор и т.д.).

Ген — функциональная единица наследственного материала. Взаимосвязь

между геном и признаком

Долгое время ген рассматривали как минимальную часть наследственного

материала (генома), обеспечивающую развитие определенного признака у

организмов данного вида. Однако каким образом функционирует ген, оставалось

неясным. В 1945 г. Дж. Бидлом и Э. Татумом была сформулирована гипотеза,

которую можно выразить формулой ≪Один ген — один фермент≫. Согласно этой

гипотезе, каждая стадия метаболического процесса, приводящая к образованию в организме (клетке) какого-то продукта, катализируется белком-ферментом, за синтез которого отвечает один ген.

Позднее было показано, что многие белки имеют четвертичную структуру, в

образовании которой принимают участие разные пептидные цепи. Например,

гемоглобин взрослого человека включает четыре глобиновых цепи — 2α и 2β,

кодируемые разными генами. Поэтому формула, отражающая связь между геном и

признаком, была несколько преобразована: ≪Один ген —один полипептид≫.

Изучение химической организации наследственного материала и процесса

реализации генетической информации привело к формированию представления о

гене как о фрагменте молекулы ДНК, транскрибирующемся в виде молекулы РНК,

которая кодирует аминокислотную последовательность пептида или имеет

самостоятельное значение (тРНК и рРНК).

Открытия экзон-интронной организации эукариотических генов и

возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная

последовательность первичного транскрипта может обеспечить синтез нескольких

полипептидных цепей с разными функциями или их модифицированных аналогов.

Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий

дыхательный фермент цитохром b. Он может существовать в двух формах (рис.

3.42). ≪Длинный≫ ген, состоящий из 6400 п. н., имеет 6 экзонов общей

протяженностью 1155 п.н. и 5 интронов. Короткая форма гена состоит из 3300 п.н. и

имеет 2 интрона. Она фактически представляет собой лишенный первых трех

интронов ≪длинный≫ ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона ≪длинного≫ гена box на основе

объединенной нуклеотидной последовательности двух первых экзонов и части

нуклеотидов второго интрона образуется матрица для самостоятельного белка —

РНК-матуразы Функцией РНК-матуразы является обеспечение

следующего этапа сплайсинга — удаление второго интрона из первичного

транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного

транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная

форма антител имеет на С-конце длинный ≪хвост≫ аминокислот, который

обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого

хвоста нет, что объясняется удалением в ходе сплайсинга из первичного

транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно

являться частью другого гена или некоторая нуклеотидная последовательность ДНК

может быть составной частью двух разных перекрывающихся генов. Например, на

физической карте генома фага ФХ174 видно, что последовательность

гена В располагается внутри гена А, а ген Е является частью последовательности

гена D. Этой особенностью организации генома фага удалось объяснить

существующее несоответствие между относительно небольшим его размером (он

состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех

синтезируемых белках, которое превышает теоретически допустимое при данной

емкости генома. Возможность сборки разных пептидных цепей на мРНК,

синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается

наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет

начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а

ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены,

транслируемые как со сдвигом рамки, так и в той же рамке считывания.

Предполагается также возможность транскрибирования двух разных мРНК с обеих

комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль

молекулы ДНК. Описанные ситуации, свидетельствующие о допустимости считывания разной

информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных

пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена.

Очевидно, нельзя больше говорить о гене как о непрерывной последовательности

ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее

время наиболее приемлемой все же следует считать формулу ≪Один ген — один

поли-пептид≫, хотя некоторые авторы предлагают ее переиначить: ≪Один

полипептид — один ген≫. Во всяком случае, под термином ген надо понимать

функциональную единицу наследственного материала, по химической природе

являющуюся полинуклеотидом и определяющую возможность синтеза

полипептидной цепи, тРНК или рРНК.

дискретность — несмешиваемость генов

Цистрон — устаревший термин, обозначающий участок ДНК, ответственный за синтез определённого белка.

У прокариот гены, выполняющие сходные метаболические функции, часто располагаются в функциональные единицы, называемые оперонами и их экспрессия регулируется совместно (полицистронный механзим регуляции активности генов).

Для эукариот термин «цистрон» не применяется. Для эукариот понятия «ген» и «цистрон» в настоящее время являются синонимами. У эукариот гены, отвечающие за последовательные стадии метаболического пути, могут располагаться как рядом, так и в самых разных участках генома, на разных хромосомах. Полицистронный механизм регуляции активности генов для эукариот не существует, и экспрессия генов, располагающихся рядом, регулируются независимо.

Рекон — наименьший неделимый элемент в нитевидной структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации.

Мутации подвергается участок ДНК, ответственный за синтез определённого белка — цистрон. Сам цистрон состоит из более мелких единиц мутации — мутонов (соответствует кодону — триплету, кодирующему аминокислоты). Однако, мутация может затронуть и отдельный нуклеотид, являющийся элементарной единицей генетической информации. В терминах классической генетики эти единицы соответствуют реконам.

Мутон — обычно определяется как единица мутации.

При возникновении спонтанной или индуцированной мутации в пределах структурного гена (цистрона) аминокислотный состав синтезируемого белка может измениться; иногда изменение в молекуле белка касается лишь одного аминокислотного остатка. Таким образом мутону, как единице мутации соответствует триплет ДНК, состоящий из трёх нуклеотидов (то есть кодон).

Однако, если мутация связана с изменением не одного, а нескольких аминокислотных остатков в молекуле белка, то тогда мутону будет соответствовать не один, а несколько триплетов, входящих в состав цистрона ответственного за синтез данного белка.

  1. Виды нуклеиновых кислот, их строение, свойства и функции. Генетический код, его характеристика. Свойства ДНК: репликация и репарация.

НУКЛЕИНОВЫЕ КИСЛОТЫ – биологические полимерные молекулы, хранящие всю информацию об отдельном живом организме, определяющие его рост и развитие, а также наследственные признаки, передаваемые следующему поколению. Нуклеиновые кислоты есть ядрах клеток всех растительных и животных организмов, что определило их название. Полимерная цепь нуклеиновых кислот собрана из фрагментов фосфорной кислоты Н3РО3 и фрагментов гетероциклических молекул, представляющих собой производные фурана. Есть лишь два вида нуклеиновых кислот, каждая построена на основе одного из двух типов таких гетероциклов – рибозы или дезоксирибозы. Полимерная цепь, построенная из фрагментов рибозы и фосфорной кислоты, представляет собой основу одной из нуклеиновых кислот –рибонуклеиновой кислоты (РНК). Термин «кислота» в названии этого соединения употреблен потому, что одна из кислотных групп ОН фосфорной кислоты остается незамещенной, что придает всему соединению слабокислый характер. Если вместо рибозы в образовании полимерной цепи участвует дезоксирибоза, то образуется дезоксирибонуклеиновая кислота, для которой повсеместно принято широко известное сокращение ДНК.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер, мономером которого являетсянуклеотид. Каждый нуклеотид состоит из остаткафосфорной кислоты, присоединённого по 5'-положению ксахарудезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёхазотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК иРНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахаррибоза). В ДНК встречается четыре вида азотистых оснований (аденин,гуанин,тиминицитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепиводородными связямисогласнопринципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК).

Биологические функции

ДНК является носителем генетической информации, записанной в виде последовательностинуклеотидовс помощьюгенетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов —наследственностьиизменчивость. В ходе процесса, называемогорепликациейДНК, образуются две копии исходной цепочки, наследуемые дочернимиклеткамиприделении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуетсяпри экспрессиигеновв процессахтранскрипции(синтеза молекулРНКна матрице ДНК) итрансляции(синтезабелковна матрицеРНК).

РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (РНК), тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров – нуклеотидов (в данном случае – рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина – урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.  Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80–90 %), соединяясь с белками, формируютрибосомы, органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.  Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. Информационные, в клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка.

Генетический код, способ сохранения наследственной информации в виде последовательности нуклеотидов в молекулах нуклеиновых кислот. Реализация генетического кода в клетке происходит в два этапа:  1) синтез молекулы матричной, или информационной, РНК на соответствующем участке ДНК; при этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность мРНК ; 2)синтез белка при котором последовательность нуклеотидов мРНК переводится в соответствующую последовательность аминокислот (см.Трансляция). Генетический код специфичен: это означает, что каждый кодон кодирует только одну аминокислоту.

Генетический код называют вырожденным, поскольку 61 кодон кодирует всего 20 аминокислот. Поэтому почти каждой аминокислоте соответствует более чем один кодон. Вырожденность генетического кода неравномерна: для аргинина, серина и лейцина она шестикратна, тогда как для многих других аминокислот (тирозина, гистидина, фенилаланина и др.) лишь двукратна. Две аминокислоты (метионин и триптофан) представлены единственными кодонами. Кодоны-синонимы почти всегда отличаются друг от друга по последнему из трех нуклеотидов, тогда как первые два совпадают. Вырожденность генетического кода имеет важное значение для повышения устойчивости генетической информации. С механизмами трансляции связана еще одна особенность генетического кода: он неперекрывающийся. Кодоны транслируются всегда целиком; для кодирования невозможно использование элементов одного из них в сочетании с элементами соседнего. Наблюдается линейное соответствие между последовательностью кодирующих триплетов и расположением остатков аминокислот в синтезируемом полипептиде, т.е. код имеет линейный непрерывающийся порядок считывания. Важнейшее свойство генетического кода - его однонаправленность. Кодоны информативны только в том случае, если они считываются в одном направлении - от первого нуклеотида к последующим. Генетический код универсален для всех живых существ. Возможны только небольшие видовые изменения, возникшие, вероятно, при эволюции и дифференцировке клеток. Большинство из них связано с вырожденностью кода и проявляется в преимуществ. использовании разных кодонов одной и той же аминокислоты и в различиях в структуре соответствующих тРНК в разных организмах или в разных тканях одного организма.

Химические и физические превращения в ходе репликации ДНК. Репликация ДНК происходит почти так же, как и транскрипция РНК на матрице ДНК, за исключением нескольких важных отличий.

1. Реплицируется не одна, а обе цепи ДНК каждой хромосомы.  2. Обе цепи ДНК реплицируются полностью — от одного конца до другого, а не частично, как при транскрипции РНК.  3. В отличие от РНК-полимеразы ДНК-полимераза представляет собой комплекс основных ферментов репликации. Этот комплекс прикрепляется к ДНК и начинает двигаться вдоль нее. Другой фермент — ДНК-лигаза, который катализирует образование связей между соседними нуклеотидами, используя для этого энергию фосфатных связей.

4. Дочерние цепи ДНК начинают формироваться одновременно в сотнях участков обеих родительских цепей. Впоследствии концы отдельных сегментов вновь синтезированной ДНК «сшиваются» ферментом ДНК-лигазой.  5. Каждая вновь синтезированная цепь ДНК остается прикрепленной посредством слабых водородных связей к родительской цепи, используемой в качестве матрицы. Впоследствии обе цепи ДНК вместе скручиваются в спираль.  6. Каждая цепь ДНК имеет длину около 6 см и состоит из миллионов витков, поэтому раскрутить две цепи без специального механизма было бы невозможно. Это достигается с помощью ферментов, которые регулярно разрезают каждую спираль по всей длине, поворачивают ее фрагменты так, чтобы они могли расплестись, и затем вновь восстанавливают целостность каждой спирали. Так возникают две новые спирали.

Репарация ДНК, коррекция ДНК и мутации. Как уже упоминалось, между завершением репликации и началом митоза проходит около 1 ч. Все это время в клетке идут активные процессы репарации и коррекции ДНК. Если во время репликации к нуклеотиду материнской цепи ДНК присоединяется некомплементарный нуклеотид дочерней цепи, то с помощью ферментов он будет вырезан и заменен на комплементарный. Эти ферменты представляют собой те же самые ДНК-полимеразы и ДНК-лигазы, которые используются в процессе репликации. Этот процесс называют коррекцией ДНК.

Благодаря репарации и коррекции ДНК ошибки транскрипции, называемые мутациями, встречаются очень редко. Появление мутаций приводит к синтезу в клетке дефектных белков вместо нормальных, вследствие этого ее функции часто нарушаются, и она может даже погибнуть. Геном человека содержит не менее 30000 генов, и период между двумя поколениями составляет в среднем 30 лет, поэтому любой геном, унаследованный от родителей, должен нести не менее 10 мутаций. Однако от этих мутаций можно найти защиту. Как известно, человеческий геном представлен двойным набором хромосом, поэтому из двух аналогичных генов хотя бы один почти наверняка будет нормальным.

  1. Реализация наследственной информации у эукариот (транскрипция, трансляция). Характеристика этапов синтеза белка. Правило Бидла-Татума.

Трансляцией (от лат. translatio — перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.[1]

Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только аминокислота глицин).

Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.

Процесс трансляции разделяют на

инициацию — узнавание рибосомой стартового кодона и начало синтеза.

элонгацию — собственно синтез белка.

терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

Инициация

Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.

Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, IF; инициаторные факторы эукариот обозначают eIF, от англ. eukaryotes).

Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.

Элонгация В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит аминоцилированную (заряженную аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует образование пептидной связи, происходит перенос растущей цепи пептида с Р-сайтовой тРНК на находящуюся в А-сайте, пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует так называемую транслокацию. Транслокация — перемещение рибосомы по мРНК на один триплет, в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). Цикл элонгации завершается, когда новая тРНК с нужным антикодоном приходит в A-сайт

Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонами.

Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК. Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'[1]

Транскрипция состоит из стадий инициации, элонгации и терминации.

Инициация транскрипции — сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности (а у эукариот также и от более далеких участков генома — энхансеров и сайленсеров) и от наличия или отсутствия различных белковых факторов.

Элонгация транскрипции

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев — переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II). Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы (терминация).

На стадии элонгации в ДНК расплетено примерно 18 пар нуклеотидов. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади — восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно[2].

В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т. н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

Терминация

У бактерий есть два механизма терминации транскрипции:

ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК, высвобождая молекулу РНК.

ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю, за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.

Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3' концу фермент добавляет несколько аденинов (…АААА), от числа которых зависит стабильность данного транскрипт.

Транскрипционные фабрики

Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 МДа комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга, а также корректирования новосинтезированного транскрипта[4]. В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные[5] свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с ядерным матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Комплекс транскрипционных фабрик, содержащих РНК полимеразу I, II или III, был проанализирован с помощью масс-спектрометрии.

Связь между геном и белком, структура которого определяется структурой гена впервые была сформулирована в виде гипотезы "1 ген - 1 фермент" Бидлом и Татумом.

В 1935 г Джордж Бидл и Борис Эфрусси изучали, как мутации в генах плодовых мушек дрозофил влияют на окраску их глаз и обнаружили, что различные мутации приводят к прекращению синтеза различных предшественников в пути биосинтеза глазного пигмента. Был сделан вывод: в норме гены обеспечивают наличие ферментов, осуществляющих биохимические реакции. Куплю Сатурнкупить б у saturn частные объявления по авто Сатурн.

В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований — у микроскопического грибка Neurospora crassa. Ими были получены мутации, у которых отсутствовала активность того или иного фермента метаболизма. А это приводило к тому, что мутантный гриб был не способен сам синтезировать определённый метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж. Бидлом и Э. Татумом теория „один ген — один фермент“ — быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.

Методы селекции так называемых „биохимических мутаций“, приводящих к нарушениям действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др. . В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что „один ген кодирует один фермент“. И хотя это представление отлично работает на практике, приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) — оно не является окончательным. Один ген — это не только один фермент.

  1. Регуляция активности генов у про- и эукариот. Работа лактозного оперона.

Изучение регуляции генной активности у прокариот привело французских микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели регуляции транскрипции. Оперон — это тесно связанная последовательность структурных генов, определяющих синтез группы белков, которые участвуют в одной цепи биохимических преобразований. Например, это могут быть гены, которые детерминируют синтез ферментов, участвующих в метаболизме какого-

либо вещества или в синтезе какого-то компонента клетки. Оперонная модель

регуляции экспрессии генов предполагает наличие единой системы регуляции у

таких объединенных в один оперон структурных генов, имеющих общий промотор

и оператор.Особенностью прокариот является транскрибирование мРНК со всех

структурных генов оперона в виде одного полицистронного транскрипта, с которого

в дальнейшем синтезируются отдельные пептиды.

Примером участия генетических и негенетических факторов в регуляции

экспрессии генов у прокариот может служить функционирование лактозного

оперона у кишечной палочки Е. colt. При отсутствии в среде, на которой

выращиваются бактерии, сахара лактозы активный белок-репрессор, синтезируемый

геном-регулятором , взаимодействует с оператором , препятствуя соединению

РНК-полимеразы с промотором и транскрипции структурных генов Z, Y, А.

Появление в среде лактозы инактивирует репрессор, он не соединяется с

оператором, РНК-полимераза взаимодействует с промотором и осуществляет

транскрипцию полицистронной мРНК. Последняя обеспечивает синтез сразу всех

ферментов, участвующих в метаболизме лактозы. Уменьшение содержания лактозы

в результате ее ферментативного расщепления приводит к восстановлению

способности репрессора соединяться с оператором и прекращению транскрипции

генов Z, Y, А.

Таким образом, регуляция экспрессии генов, организованных у прокариот в

опероны, является координированной. Синтез полицистронной мРНК обеспечивает

одинаковый уровень синтеза всех ферментов, участвующих в биохимическом

процессе.

В связи с особенностями организации отдельных генов эукариот и генома в

целом регуляция генной активности у них характеризуется некоторыми отличиями

по сравнению с прокариотами.

У эукариот не установлено оперонной организации генов. Гены,

определяющие синтез ферментов одной цепи биохимических реакций, могут быть

рассеяны в геноме и, очевидно, не имеют, как у прокариот, единой регулирующей

системы (ген-регулятор, оператор, промотор). В связи с этим синтезируемые мРНК

у эукариот моноцистронны, т.е. являются матрицами для отдельных пептидных

цепей. В настоящее время механизмы регуляции и координации активности

эукариотических генов интенсивно изучаются. Установлено, что их

функционирование несомненно подчиняется регуляторным воздействиям, однако

регуляция транскрипции у эукариот является комбинационной, т.е. активность

каждого гена регулируется большим спектром генов-регуляторов (рис. 3.87).

Регуляция экспрессии гена, кодирующего белок Х у эукариот,

двумя регуляторными белками. У многих эукариотических генов, кодирующих белки и транскрибируемых РНК-полимеразой II, в ДНК имеется несколько областей, которые узнаются разными белками-регуляторами. Одной из них является область, расположенная вблизи промотора. Она включает около 100 пар нуклеотидов, в том числе ТАТА-

блок, располагающийся на расстоянии 25 пар нуклеотидов от точки начала

транскрипции. Установлено, что для успешного присоединения РНК-полимеразы II

к промотору необходимо предварительное соединение с ТАТА-блоком особого

белка — фактора транскрипции — с образованием стабильного транскрипционного

комплекса. Именно этот комплекс ДНК с белком узнается РНК-полимеразой II.

Последовательности нуклеотидов, примыкающие к ТАТА-блоку, формируют

требуемый для транскрипции элемент, расположенный перед промотором.

Другая область, играющая важную роль в регуляции активности

эукариотических генов, располагается на большом расстоянии от промотора (до

нескольких тысяч пар нуклеотидов) и называется энхансером (от англ. enhance —

усиливать).

И энхансер, и препромоторный элемент эукариотических генов содержат

серию коротких нуклеотидных последовательностей, которые связываются с

соответствующими регуляторными белками. В результате взаимодействия этих

белков происходит включение или выключение генов.

Особенностью регуляции экспрессии эукариотических генов является также

существование белков-регуляторов, которые способны контролировать

транскрипцию многих генов, кодирующих, возможно, другие белки-регуляторы. В

связи с этим некоторые (главные) белки-регуляторы обладают координирующим

влиянием на активность многих генов и их действие характеризуется плейотропным

эффектом (рис. 3.88). Примером может служить существование белка, который

активирует транскрипцию нескольких специфических генов, определяющих

дифференцировку предшественников жировых клеток.

Регуляция экспрессии многих генов эукариот

одним белком-регулятором

Ввиду того что в геноме эукариот имеется много избыточной ДНК, а в каждой

клетке организма транскрибируется всего 7—10% генов, логично предположение о

том, что у них преобладает позитивный генетический контроль, при котором

активация небольшой части генома оказывается более экономичной, нежели

репрессия основной массы генов.

Несомненной особенностью регуляции транскрипции у эукариот является

подчиненность этих процессов регулирующим влияниям со стороны гормонов

организма. Последние часто играют роль индукторов транскрипции. Так, некоторые

стероидные гормоны обратимо связываются особыми белками-рецепторами,

образуя с ними комплексы. Активированный гормоном рецептор приобретает

способность соединяться со специфическими участками хроматина, ответственными

за регуляцию активности генов, в которых рецепторы узнают определенные

последовательности ДНК.

Специфичность регулирующего воздействия гормона на транскрипцию

обусловлена не только природой самого гормона, но и природой клетки-мишени,

синтезирующей специфический белок-рецептор, который влияет на транскрипцию

определенного для данной клетки набора генов. Примером участия гормонов в

регуляции активности определенных генов может служить влияние тестостерона на

развитие тканей организма по мужскому типу при наличии специфического белка-

рецептора. Отсутствие последнего при мутации соответствующего гена не дает

возможности гормону проникнуть в ядра клеток-мишеней и обеспечить включение

определенного набора генов: развивается синдром тестикулярной феминизации, или

синдром Морриса .

Следующая особенность регуляции генной активности у эукариот связана с

образованием стойкого комплекса ДНК с белками — хроматина (см. разд. 3.5.2.2).

Ведущая роль в компактизации ДНК принадлежит гистонам, поэтому они,

несомненно, участвуют и в процессах регуляции генной активности (см. разд. 3.5.4).

Непременным условием для осуществления транскрипции у эукариот является

предварительная декомпактизация хроматина на соответствующем участке, где

временно утрачивается связь с Hi-гистонами и несколько ослабляется связь с

нуклеосомными гистонами. Правда, нуклеосомная организация хроматина не

утрачивается даже в ходе транскрипции, однако контакт ДНК и негистоновых

белков становится возможным и происходит дерепрессия гена.

Отличительной особенностью регуляции экспрессии генов у эукариот

является возможность ее осуществления не только на стадии транскрипции, но и на

других этапах растянутого во времени процесса реализации наследственной

информации. Регуляция на стадии транскрипции является наиболее экономичной,

но недостаточно быстро реагирующей на изменение ситуации. Так, возникшая в

клетке потребность в каком-либо белке не может быть быстро удовлетворена путем

включения транскрипции соответствующего гена. Синтезированный транскрипт

должен подвергнуться процессингу, затем зрелая мРНК должна выйти из ядра в

цитоплазму и, образуя комплекс с рибосомами, осуществить трансляцию

информации, синтезировав пептид, который, лишь пройдя посттрансляционное

изменение, формирует активный белок, необходимый клетке.

В том случае, когда клетке нужно прекратить синтез какого-то продукта,

после выключения транскрипции соответствующего гена в цитоплазму некоторое

время будут продолжать поступать созревающие молекулы мРНК, осуществляющие

там синтез пептидных цепей, пока они не деградируют под действием ферментов.

Таким образом, для эффективной регуляции экспрессии генов у эукариот должны

существовать механизмы, работающие не только на стадии транскрипции, но и на

других этапах этого процесса.

Связанная с экзон-интронной организацией генов необходимость процессичга,

в том числе сплайсинга, делает возможным регуляцию этих процессов в ядре. В

настоящее время обсуждается роль интронных участков ДНК в изменении схемы

сплайсинга при синтезе антител или цитохрома b. Это создает возможность, используя один и тот же первичный транскрипт, обеспечивать образование матриц для разных пептидов, вырезая из них разные последовательности или изменяя последовательности на 5'- и 3'-концах мРНК.

Очевидно, и транспорт зрелых мРНК из ядра в цитоплазму также

регулируется определенным образом, так как установлено, что лишь небольшая

часть РНК, транскрибируемой с генов, после сплайсинга покидает ядро.

Значительное количество ее деградирует. Возможно, это является результатом

процессинга, приводящего к появлению ≪неправильных≫ матриц.

Существуют механизмы, обеспечивающие регуляцию процессов синтеза

пептидных цепей. Они менее экономичны, но отличаются быстротой реагирования

на изменения потребностей клетки в данном белке. Регуляция трансляции

осуществляется на стадии инициации путем воздействия на один из факторов

инициации, катализирующий присоединение к малой субъединице рибосомы тРНК,

несущей метионин (формилметионин).В результате при наличии в

цитоплазме мРНК трансляции на ней не происходит. Такая ситуация наблюдается,

например, при отсутствии в цитоплазме гема, что ведет к выключению трансляции

глобиновых цепей гемоглобина. Наконец, регуляция процесса реализации наследственной информации может осуществляться и на стадии посттрансляционных изменений. Прекращение этих процессов обусловливает задержку в формировании активных молекул белка при наличии необходимых для этого пептидных цепей. Например, для формирования активной формы белкового гормона — инсулина — из проинсулина должны вырезаться две субъединицы. Торможение этих процессов уменьшает выход конечного активного продукта. Таким образом, рассмотренный выше пример регуляции экспрессии генов демонстрирует сложнейшие взаимосвязи, которые существуют между ними в геноме. Формирование любого признака поэтому нельзя рассматривать как результат действия одной пары аллельных генов в генотипе. В любом случае регуляция экспрессии ответственного за этот признак гена осуществляется при участии других генов.

  1. Формы изменчивости, их значение в онтогенезе и эволюции. Модификационная изменчивость. Норма реакции, фено- и генокопии. Экспрессивность и пенентрантность. Развитие фенотипа как результат реализации генотипа в конкретных условиях среды. Комбинативная ашоаизменчивость и ее роль

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак — жирность молока — слабо подвержен изменениям условий среды, а масть животного — еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции. Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции — жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др. Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, т. е. характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака. Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменччивоти генотипом

Норма реакции — это предел изменчивости определенного признака, в зависимости от окружающих воздействий. Пример: у зайца шире норма реакции на колебания температуры окружающей среды, чем у коров. Корова не может себе позволить безнаказанно гулять зимой и прыгать по сугробам. Зайцы же не плохо себя чувствуют и зимой и летом. А у лошадей узкая норма реакции на изменения состава крови, и малейшее его нарушение может быть фатально для животного. Лошади вынуждены пить исключительно чистую воду и остерегаться даже укуса пчелы. А вот обычные домашние свиньи имеют тот же диапазон значительно шире, вот и способны пить и есть практически что угодно.

Фенокопии — изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации. В медицине фенокопии — ненаследственные болезни, сходные с наследственными.одно, без вреда организму.

Генокопии (лат.genocopia) — это сходные фенотипы, сформировавшиеся под влиянием разных неаллельных генов. То есть это одинаковые изменения фенотипа, обусловленные аллелями разных генов, а также имеющие место в результате различных генных взаимодействий или нарушений различных этапов одного биохимического процесса с прекращением синтеза. Проявляется как эффект определенных мутаций, копирующих действие генов или их взаимодействие.

Экспрессия генов - это процесс в ходе, которого информация, содержащаяся в гене, используется для синтеза функционального генетического продукта. Как правило, этим генетическим продуктом являются белки илиРНК.  Процесс экспрессии генов происходит в организмах всех живых существ:эукариот(в том числе в многоклеточных организмах), прокариот (у бактерий и архей), а также вирусов - для создания макромолекулярных основ для их жизнедеятельности. Некоторые процессы, происходящие при экспрессии генов, могут модулироваться определенными факторами, напримертранскрипция,сплайсинг РНК,трансляцияи посттрансляционная модификация белка.     Экспрессия генов обеспечивает поддержание структуры и функции клетки, что является основой для дифференциации клеток, морфогенеза, а также универсальной адаптации любого организма к условиям существования. Регуляция генов может также служить в качестве субстрата для эволюционных изменений, поскольку контроль над временем, местом и интенсивностью экспрессии генов может иметь огромное влияние на функции (действие) генов в клетке или в многоклеточном организме.

Пенетрантность (от лат. penetro — проникаю, достигаю), количественный показатель фенотипической изменчивости проявления гена. Измеряется (обычно в %) отношением числа особей, у которых данный генпроявился вфенотипе, к общему числу особей, вгенотипекоторых этот ген присутствует в необходимом для его проявления состоянии (гомозиготном — в случае рецессивных генов или гетерозиготном — в случае доминантных генов). Проявление гена у 100% особей с соответствующим генотипом называется полной П., в остальных случаях — неполной П. Неполная П. свойственна проявлению многих генов человека, животных, растений и микроорганизмов. Например, некоторые наследственные болезни человека развиваются только у части лиц, в генотипе которых присутствует аномальный ген; у остальных же наследственное предрасположение к болезни остаётся нереализованным. Неполная П. гена обусловлена сложностью и многоступенчатостью процессов, протекающих от первичного действия генов на молекулярном уровне до формирования конечных признаков на уровне целостного организма. П. гена может варьировать в широких пределах в зависимости отгенотипической среды. Путём селекции можно получать линии особей с заданным уровнем П. Средний уровень П. зависит также от условий среды. См. такжеЭкспрессивность,Феногенетика.

Комбинативная изменчивость - это следствие перекреста гомологичных хромосом, их случайного расхождения в мейозе и случайного сочетания гамет при оплодотворении. Комбинативная изменчивость ведет к появлению бесконечно большого разнообразия генотипов и фенотипов. Она служит неиссякаемым источником наследственного разнообразия видов и основой для естественного отбора. Громадное генотипическое и, следовательно, фенотипическое разнообразие в природных популяциях является тем исходным эволюционным материалом, с которым оперирует естественный отбор.

  1. Виды наследственной изменчивости: комбинативная и мутационная. Теория мутагенеза. Классификация мутаций: генные, хромосомные, геномные, спонтанные и индуцированные, генеративные, соматические и т.д. Сущность, примеры. Значение мутационной изменчивости.

Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

1) Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.

2) Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

3) Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются).

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. 

Мутагенез — это внесение изменений в нуклеотидную последовательность ДНК (мутаций). Различают естественный (спонтанный) и искусственный (индуцированный) мутагенез.

Естественный, или спонтанный, мутагенез происходит вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких какультрафиолет, радиация, химические мутагены.

Механизм мутагенеза

Последовательность событий приводящая к мутации (внутри хромосомы) выглядит следующим образом:

Происходит повреждение ДНК.

В случае, если повреждение произошло в незначащем (интрон) фрагменте ДНК, то мутации не происходит.

В случае если повреждение произошло в значащем фрагменте (экзон), и произошла корректная репарация ДНК, или вследствие вырожденности генетического кода не произошло нарушения, то мутации не происходит.

Только в случае такого повреждения ДНК, которое произошло в значащей части, которое не было корректно репарированно, которое изменило кодировку аминокислоты, или которое привело к выпадению части ДНК и соединению ДНК вновь в единую цепь — то оно приведет к мутации.

Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.

Искусственный мутагенез широко используют для изучения белков и улучшения их свойств (направленной эволюции(англ.)).

Ненаправленный мутагенез

Методом ненаправленного мутагенеза в последовательность ДНК вносятся изменения с определенной вероятностью. Мутагенными факторами (мутагенами) могут быть различные химические и физические воздействия — мутагенные вещества, ультрафиолет, радиация. После получения мутантных организмов производят выявление (скрининг) и отбор тех, которые удовлетворяют цели мутагенеза. Ненаправленный мутагенез более трудоемок и его проведение оправдано, если разработана эффективная система скрининга мутантов.

Направленный мутагенез

В направленном (сайт-специфическом) мутагенезе изменения в ДНК вносятся в заранее известный сайт. Для этого синтезируют короткие одноцепочечные молекулы ДНК (праймеры),комплементарные целевой ДНК за исключением места мутации.

Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации— результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Этодупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции ("выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -><- ГЦ; AT -><-; ЦГ; или AT -><- ТА), инверсии (переворот участка гена на 180°).

Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов (рис. 3.13):

нехватка, или дефишенси, — потеря концевых участков хромосомы;

делеция — выпадение участка хромосомы в средней ее части;

дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.

Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом(анеуплоидия).

Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Анеуплоидия, или гетероплодия, — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик)по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

  1. Генотипический и фенотипический полиморфизм. Источники формирования. Уровни проявления полиморфизма.

Фенотипический полиморфизм

Фенотипический полиморфизм - это многообразие нормальных и патологических признаков и фенотипов, выявляемых на любых уровнях дискретности организма: молекулярном, клеточном, тканевом, органном и организменном.

С фенотипическим полиморфизмом тесно связаны:

•  полиморфизм последовательностей ДНК или генетический полиморфизм (см. главу 2), служащий основой генетической уникальности (индивидуальности) человека;

•  полиморфизм белков, или протеомный (биохимический) полиморфизм (см. выше), служащий основой фенотипической уникальности (индивидуальности) человека.

28.Методы изучения наследственности и изменчивости у человека (генеалогический, цитогенетический, биохимический, близнецовый, антропогенетический, методы пренатальной диагностики, молекулярно-генетические методы ДНК-диагностики, гибридизации соматических клеток, метод моделирования). Успехи генетики в развитии новых методов.

К основным методам изучения наследственности человека относятся.

Клинико-генеалогический метод. Он был введен в конце XIX в. английским ученым Френсисом Гальтоном и основан на составлении и анализе родословных. В генетическую карту подробно записывают все сведения о человеке, который обратился за консультированием (в генетике его называют “пробанд”), составляется анамнез, так в медицине называется запись воспоминаний, связанных с историей болезни пациента, ее начало, последующее течение, выясняется возраст, в котором появились первые признаки заболевания. Затем собираются сведения о его пробанд. Существуют определенные опросники, анкеты, по которым работают врачи. Сбор такого материала длительный и трудоемкий процесс. В генеалогическом методе можно выделить два этапа: составление родословной и генеалогический анализ. При составлении родословной используются специальные символы графического изображения родословной

Цитогенетический метод (цито – это клетка). Цитогенетическим методом под световым микроскопом, применяя специальные методики окрашивания, изучают хромосомы различных клеток человека. Материалом для цитогенетических исследований могут быть клетки периферической крови, например, лимфоциты, клетки кожи (фибробласты), клетки, полученные из амниотической жидкости плода и др. Медики изучают особенности кариотипа больного человека. Кариотип – это совокупность хромосом клетки. У человека 46 хромосом, 23 пары гомологичных хромосом. Если число хромосом меняется хотя бы на одну хромосому в сторону уменьшения или увеличения – это признак серьезного генетического заболевания. Каждая пара хромосом человека имеет определенную форму, характеризуется расположением центромеры, окраской, длиной плеч. При различных заболеваниях эти внешние признаки строения хромосом могут меняться и служат критерием для постановки раннего диагноза заболевания. Это особенно важно, когда исследуются клетки, взятые из амниотической жидкости беременной женщины, что позволяет еще до рождения ребенка установить наследственную патологию и назначить нужное лечение. Много наследственных заболеваний сцеплены с половыми хромосомами. Половой хроматин определяют анализом эпителиальных клеток в соскобе слизистой оболочки щеки человека. У женщин вторая Х-хромосома обнаруживается в виде округлого характерного пятнышка в ядре клетки, ее называют тельцем Барра. Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании – синдроме Шерешевского – Тернера.

Биохимические методы позволяют выявить изменения в обмене веществ, для уточнения диагноза заболевания. Заболевания, в основе которых лежат нарушения обмена веществ, составляют значительную часть наследственных заболеваний, так как изменения, которые происходят на уровне генов, не могут не повлечь за собой нарушения синтеза различных белков, принимающих важное участие в регуляции процессов жизнедеятельности.

Близнецовый метод позволяет оценить относительную роль среды и генетических факторов в развитии конкретного признака или заболевания. Особенно большой интерес для науки представляет изучение близнецовых пар однояйцовых, т.е. монозиготных близнецов, которые были разлучены в детстве и воспитывались в разных семьях, в разных условиях. Поскольку у таких людей набор хромосом полностью одинаков, на развитие конкретного признака или заболевания будут влиять именно различия в окружающей среде. Эти исследования показали, что далеко не все наследственные заболевания обязательно проявляются у конкретного человека, на их развитие большое влияние оказывает образ жизни самого человека, т.е. окружающая среда, например для таких наследственных болезней как сахарный диабет или шизофрения. Близнецовый метод применяется и для изучения дизиготных, разнояйцовых братьев и сестер, которые хотя и имеют различные генотипы, но при этом обладают большим сходством, так как несут гены одной супружеской пары.

Популяционно-генетический метод дает возможность рассчитать частоту нормальных и патологических генотипов в популяции: гетерозигот, гомозигот доминантных и рецессивных, а также частоту нормальных и патологических фенотипов. Это метод медицинской статистики. Следует помнить, что наследственные заболевания распределены по различным регионам земного шара, среди различных рас и народностей неравномерно. Знание частоты заболеваний в данном регионе способствует правильной организации профилактических мероприятий.

Методы пренатальной (внутриутробной, до рождения человека) диагностики представляют собой совокупность исследований, позволяющих обнаружить заболевание до рождения ребенка. К основным методам пренатальной диагностики относятся ультразвуковое обследование, биопсия (взятие небольшого кусочка ткани из органа или какой-либо части тела для микроскопического исследования), хориона (наружная оболочка плода) и многие другие.

Метод моделирования изучает болезни человека на животных, которые могут болеть этими заболеваниями. В основе лежит закон Вавилова о гомологичных рядах наследственной изменчивости, например, гемофилию, сцепленную с полом, можно изучать на собаках, эпилепсию – на кроликах, сахарный диабет, мышечную дистрофию – на крысах, незаращение губы и неба – на мышах.

Генетика соматических клеток изучает наследственность и изменчивость соматических клеток, т.е. клеток тела, не половых. Соматические клетки имеют весь набор генетической информации, на них можно изучать генетические особенности целостного организма.

Соматические клетки человека получают для генетических исследований из материала биопсий (прижизненное иссечение тканей или органов), когда для исследования берется небольшой кусочек ткани. Как правило, это делается во время операций, когда надо установить имеет ли данное образование, например, опухоль, злокачественную или доброкачественную природу.

В настоящее время применяют следующие методы генетики соматических клеток: простое культивирование, гибридизация, клонирование и селекция. Простое культивирование – это размножение клеток на питательных средах, чтобы получить их в достаточном количестве, для цитогенетического, биохимического, иммунологического и других методов.

При гибридизации соматических клеток можно скрещивать клетки, полученные от разных людей, а также клетки человека с клетками мыши, крысы, морской свинки, обезьяны и других животных. Такие исследования позволяют установить группы сцепления, а используя хромосомные перестройки выявлять последовательность расположения генов и строить генетические карты хромосом человека.

Клонирование – это получение потомства одной клетки (клона). Все клетки в результате клонирования будут одинакового генотипа.

Селекция – это отбор клеток с заранее заданными свойствами. Затем проводится выращивание и размножение этих клеток на специальных питательных средах. Например, можно использовать питательную среду без лактозы, но с добавлением других сахаров, и из большого числа клеток, помещенных в нее, могут оказаться несколько, способных жить в отсутствии лактозы. Потом из таких клеток получают клон.

    1. Понятие о генных болезнях человека: фенилкетонурия, альбинизм, галактоземия, серповидно-клеточная анемия. Механизм развития, методы диагностики, профилактика генных болезней.

Фенилкетонури́я (фенилпировиноградная олигофрения) — наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина. Сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся, в частности, в виде нарушения умственного развития.

Вследствие метаболического блока активируются побочные пути обмена фенилаланина, и в организме происходит накопление его токсичных производных — фенилпировиноградной и фениломолочной кислот, которые в норме практически не образуются. Кроме того, образуются также почти полностью отсутствующие в норме фенилэтиламин и ортофенилацетат, избыток которых вызывает нарушение метаболизма липидов в головном мозге. Предположительно, это и ведёт к прогрессирующему снижению интеллекта у таких больных вплоть до идиотии. Окончательно механизм развития нарушений функций мозга при фенилкетонурии остается неясным. Среди причин также предполагается дефицит нейромедиаторов мозга, вызванный относительным снижением количества тирозина и других «больших» аминокислот, конкурирующих с фенилаланином при переносе через гематоэнцефалический барьер, и прямое токсическое действие фенилаланина. Производится полуколичественным тестом или количественным определением фенилаланина в крови. При нелеченных случаях возможно выявление продуктов распада фенилаланина (фенилкетонов) в моче (не ранее 10-12 дня жизни ребенка). Также возможно определение активности фермента фенилаланингидроксилазы в биоптате печени и поиск мутаций в гене фенилаланингидроксилазы. Для диагностики 2 и 3 типа, связанных с мутацией в гене, отвечающем за синтез кофактора, необходимы дополнительные диагностические исследования. В возрасте от 2-4 месяцев у больных появляются такие симптомы, как вялость, судороги, экзема, мышиный запах.

Лечение и профилактика

При своевременной диагностике патологических изменений можно полностью избежать, если с рождения и до полового созревания ограничить поступление в организм фенилаланина с пищей.

Позднее начало лечения хотя и даёт определённый эффект, но не устраняет развившихся ранее необратимых изменений ткани мозга.

Некоторые из современных газированных напитков, жевательных резинок и лекарственных препаратов содержат фенилаланин в форме дипептида (аспартам), о чём производители обязаны предупреждать на этикетке. При рождении ребёнка в роддомах на 3-4 сутки берут анализ крови и проводят неонатальный скрининг для обнаружения врожденных заболеваний обмена веществ. На этом этапе возможно обнаружение фенилкетонурии, и, как следствие, возможно раннее начало лечения для предотвращения необратимых последствий. Лечение проводится в виде строгой диеты от обнаружения заболевания как минимум до полового созревания, многие авторы придерживаются мнения о необходимости пожизненной диеты. Диета исключает мясные, рыбные, молочные продукты и другие продукты, содержащие животный и, частично, растительный белок. Дефицит белка восполняется аминокислотными смесями без фенилаланина. Кормление грудью детей, больных фенилкетонурией, возможно и может быть успешным при соблюдении некоторых ограничений[ Альбинизм - это отсутствие пигмента в коже, волосах, тканях глаза. Различают полный альбинизм, при котором пигмент отсутствует во всем организме, и частичный альбинизм, при котором пигмент отсутствует только в отдельных органах, например в глазах. При общем альбинизме вся кожа, в том числе и кожа век, имеет бледно-розовую или молочно-белую окраску. Брови и ресницы тоже обесцвечены, белы. Изменения при альбинизме не ограничиваются кожей, а проявляются большей или меньшей недостаточностью пигмента внутри глаза: в радужке, в хориоидее, в сетчатке.

Из-за альбинизма развивается фотофобия - светобоязнь, человек не может переносить яркий свет и вынужден носить темные очки или темные контактные линзы с отверстием в центре. Данное отклонение связано с отсутствием в организме пигмента, который носит название меланин. Меланин придает окраску нашей коже, волосам, глазам. Он содержится в сосудистой оболочке глаза, благодаря чему свет попадает в глаз только через зрачок. Роль меланина в глазу очень важна. Недостаточность пигмента в сетчатке приводит к возникновению особого зрительного расстройства - никталопии. Человек, страдающий этим расстройством, плохо видит при дневном освещении и лучше - при сумеречном освещении. Существуют методы, позволяющие найти в гене мутацию, ответственную за болезнь, или идентифицировать ДНК-маркер, который генетически связан с больным геном. С помощью генетических диагностических тестов, основанных на анализе ДНК, можно выявлять генетические дефекты в организме на ранних стадиях его развития и даже еще до рождения ребенка. Нетяжелые непрогрессирующие наследственные аномалии не являются основанием для ограничения деторождения, но этот вопрос всегда лучше решать со специалистом.

  Галактоземия - редкое генетическое нарушение обмена веществ, при котором изменяется нормальный процесс метаболизма углеводов (сахаров) галактозы. Галактоземию не следует путать с непереносимостью лактозы, ведь эти болезни никак не связаны. Галактоземия наследуется за аутосомно-рецессивным типом и возникает из-за дефицита активности фермента, отвечающего за усвоение организмом галактозы. 

ДИАГНОСТИКА И ДИФДИАГНОСТИКА Позитивные пробы на сахар и обнаружение галактозы в моче в первые дни жизни, а также уровень ее в крови более 0,2 г/л требуют специального обследования ребенка на галактоземию. Существуют специальные методы определения активности ферментов, превращающихся в галактозу, которые выполняются в централизованных биохимических лабораториях. Дифференциальный диагноз проводится обычно с сахарным диабетом. Тяжелые формы заканчиваются летально в первые месяцы жизни, при затяжном течении на первый план могут выступать явления хронической недостаточности печени или поражения центральной нервной системы. ЛЕЧЕНИЕ И ПРОФИЛАКТИКА При подтверждении диагноза необходим перевод ребенка на питание с исключением, главным образом, женского молока. Для этого разработаны специальные продукты: сояваль, нутрамиген, безлактозный энпит. Рекомендуются заменные переливания крови, дробные гемотрансфузии, вливания плазмы. Из лекарственных препаратов показано назначение оротата калия, АТФ, кокарбоксилазы, комплекс витаминов. Показана высокая эффективность раннего выявления беременных в семьях высокого риска и внутриутробной профилактики, состоящей в исключении молока из диеты беременных. Учет семей риска позволяет рано, т. е. еще в доклинической стадии, подвергнуть специальному обследованию новорожденного и при положительных результатах перевести его на безлактозное вскармливание. Для раннего выявления предложены также специальные скрининг-программы массового обследования новорожденных.

Серповидно-клеточная анемия - это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение - так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидно-клеточной анемии. Серповидно-клеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причем больные серповидно-клеточной анемией обладают повышенной (хотя и не абсолютной) врожденной устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке.

В основе диагностики серповидно-клеточной анемии лежит анализ физических свойств гемоглобина. Первым и самым старым методом такого анализа является исследование т.н. «влажного мазка». При смачивании мазка крови метабисульфитом натрия эритроциты отдают кислород и под микроскопом можно увидеть характерное изменение их формы. Для большей точности через 24 часа исследование повторяют. Другой, более распространенный метод основан на выявлении гемоглобина серповидных клеток по его сниженной растворимости в некоторых буферных растворах, что определяют по мутности раствора, содержащего такой гемоглобин. Широкое использование этого метода связано с возможностью быстрого получения результатов (уже через 10–15 минут). К сожалению, указанные методы не позволяют отличить гетерозиготное состояние от гомозиготного. В настоящее время это можно сделать только с помощью электрофореза гемоглобина, т.е. анализа его подвижности в электрическом поле. Без такого анализа невозможны ни точная диагностика, ни надежное консультирование, но для массовых обследований он слишком дорог и занимает много времени.

  1. Хромосомные болезни, связанные с изменением числа хромосом (синдром Патау и Эдварса, болезнь Дауна, синдром Клайнфельтера, синдром Шерешевского-Тернера и др.). Генетическая основа, основные клинические проявления и методы диагностики.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

Синдром Дауна

Беременная женщина может пройти обследование на выявление нарушений плода. Многие стандартные дородовые обследования способны обнаружить синдром Дауна у плода. Например, имеются специфические УЗИ-признаки синдрома. Генетические консультации с генетическими тестами (амниоцентез, биопсия хориона, кордоцентез), как правило, предлагаются семьям, риск рождения в которых ребёнка с синдромом Дауна наиболее велик. В США инвазивные и неинвазивные обследования доступны для всех женщин, вне зависимости от их возраста. Однако инвазивные обследования проводить не рекомендуется, если женщине больше 34-х лет и неинвазивные обследования не показали вероятных нарушений.

Амниоцентез и биопсия хориона считаются инвазивными обследованиями, так как при них в матку женщины вводят различные инструменты, что несёт в себе некоторый риск повреждения стенки матки, плода или даже выкидыша. Риск выкидыша при биопсии хориона — 1 %, при амниоцентезе — 0,5 %. Существует несколько неинвазивных обследований, они, как правило, проводятся в конце первого или в начале второго триместра. В каждом из них есть шанс получить ложноположительный результат, то есть обследование покажет, что у плода синдром Дауна, хотя на самом деле он здоров. Даже с самыми лучшими обследованиями вероятность обнаружения синдрома составляет 90—95 %, а уровень ложноположительных результатов 2—5 %.

Характерные черты, обычно сопутствующие синдрому Дауна «плоское лицо» — 90 %

брахицефалия (аномальное укорочение черепа) — 81 %

кожная складка на шее у новорожденных — 81 %

эпикантус (вертикальная кожная складка, прикрывающая медиальный угол глазной щели) — 80 %

гиперподвижность суставов — 80 %

мышечная гипотония — 80 %

плоский затылок — 78 %

короткие конечности — 70 %

брахимезофалангия (укорочение всех пальцев за счёт недоразвития средних фаланг) — 70 %

катаракта в возрасте старше 8 лет — 66 %

открытый рот (в связи с низким тонусом мышц и особым строением нёба) — 65 %

Синдром Патау

Характерным осложнением беременности при вынашивании плода с синдромом Патау является многоводие: оно встречается почти в 50 % случаев Синдрома Патау.

При синдроме Патау наблюдаются тяжелые врожденные пороки. Дети с синдромом Патау рождаются с массой тела ниже нормы (2500 г). У них выявляются умеренная микроцефалия, нарушение развития различных отделов ЦНС, низкий скошенный лоб, суженные глазные щели, расстояние между которыми уменьшено, микрофтальмия и колобома, помутнение роговицы, запавшая переносица, широкое основание носа, деформированные ушные раковины, расщелина верхней губы и нёба, полидактилия, флексорное положение кистей, короткая шея. У 80 % новорожденных встречаются пороки развития сердца: дефекты межжелудочковой и межпредсердной перегородок, транспозиции сосудов и др. Наблюдаются фиброкистозные изменения поджелудочной железы, добавочные селезенки, эмбриональная пупочная грыжа. Почки увеличены, имеют повышенную дольчатость и кисты в корковом слое, выявляются пороки развития половых органов. Для СП характерна задержка умственного развития.

В связи с тяжелыми врожденными пороками развития большинство детей с синдромом Патау умирают в первые недели или месяцы (95 % — до 1 года).

Однако некоторые больные живут в течение нескольких лет. Более того, в развитых странах отмечаются тенденция увеличения продолжительности жизни больных синдромом Патау до 5 лет (около 15 % детей) и даже до 10 лет (2 — 3 % детей).

Оставшиеся в живых страдают глубокой идиотией.

Синдром Эдвардса

Дети с трисомией 18 рождаются с низким, в среднем 2177 г, весом. При этом длительность беременности — нормальная или даже превышает норму. Фенотипические проявления синдрома Эдвардса многообразны. Чаще всего возникают аномалии мозгового и лицевого черепа, мозговой череп имеет долихоцефалическую форму. Нижняя челюсть и ротовое отверстие маленькие. Глазные щели узкие и короткие. Ушные раковины деформированы и в подавляющем большинстве случаев расположены низко, несколько вытянуты в горизонтальной плоскости. Мочка, а часто и козелок отсутствуют. Наружный слуховой проход сужен, иногда отсутствует. Грудина короткая, из-за чего межреберные промежутки уменьшены и грудная клетка шире и короче нормальной. В 80 % случаев наблюдается аномальное развитие стопы: пятка резко выступает, свод провисает (стопа-качалка), большой палец утолщен и укорочен. Из дефектов внутренних органов наиболее часто отмечаются пороки сердца и крупных сосудов: дефект межжелудочковой перегородки, аплазии одной створки клапанов аорты и лёгочной артерии. У всех больных наблюдаются гипоплазия мозжечка и мозолистого тела, изменения структур олив, выраженная умственная отсталость, снижение мышечного тонуса, переходящее в повышение со спастикой.

Синдром Шерешевского — Тёрнера

Отставание больных с синдромом Тернера в физическом развитии заметно уже с рождения. Примерно у 15 % больных задержка наблюдается в период полового созревания. Для доношенных новорожденных характерна малая длина (42—48 см) и масса тела (2500—2800 г и менее). Характерными признаками синдрома Тернера при рождении являются избыток кожи на шее и другие пороки развития, особенно костно-суставной и сердечно-сосудистой систем, «лицо сфинкса», лимфостаз (застой лимфы, клинически проявляющийся крупными отеками). Для новорожденного характерны общее беспокойство, нарушение сосательного рефлекса, срыгивание фонтаном, рвота. В раннем возрасте у части больных отмечают задержку психического и речевого развития, что свидетельствует о патологии развития нервной системы. Наиболее характерным признаком является низкорослость. Рост больных не превышает 135—145 см, масса тела часто избыточна.

При синдроме Тернера патологические признаки по частоте встречаемости распределяются следующим образом: низкорослость (98%), общая диспластичность (неправильное телосложение) (92%), бочкообразная грудная клетка (75%), укорочение шеи (63%), низкий рост волос на шее (57%), высокое «готическое» нёбо (56%), крыловидные складки кожи в области шеи (46%), деформация ушных раковин (46%), укорочение метакарпальных и метатарзальных костей и аплазия фаланг (46%), деформация локтевых суставов (36%), множественные пигментные родинки (35%), лимфостаз (24%), пороки сердца и крупных сосудов (22%), повышенное артериальное давление (17%).

Половое недоразвитие при синдроме Тернера отличается определённым своеобразием. Нередкими признаками являются геродермия (патологическая атрофия кожи, напоминающая старческую) и мошонкообразный вид больших половых губ, высокая промежность, недоразвитие малых половых губ, девственной плевы и клитора, воронкообразный вход во влагалище. Молочные железы у большинства больных не развиты, соски низко расположены. Вторичное оволосение появляется спонтанно и бывает скудным. Матка недоразвита. Половые железы не развиты и представлены обычно соединительной тканью. При синдроме Тернера отмечается склонность к повышению артериального давления у лиц молодого возраста и к ожирению с нарушением питания тканей.

Интеллект у большинства больных с синдромом Тернера практически сохранен, однако частота олигофрении все же выше. В психическом статусе больных с синдромом Тернера главную роль играет своеобразный психический инфантилизм с эйфорией при хорошей практической приспособляемости и социальной адаптации.

Диагноз синдрома Тернера основывается на характерных клинических особенностях, определении полового хроматина (вещества клеточного ядра) и исследовании кариотипа (хромосомного набора). Дифференциальный диагноз проводится с нанизмом (карликовостью), для исключения которого проводится определение содержания гормонов гипофиза в крови, особенно гонадотропинов.

Синдром Кляйнтфельтера

Синдром Клайнфельтера обычно клинически проявляется лишь после полового созревания и поэтому диагностируется относительно поздно. Но тем не менее при внимательном подходе на разных этапах полового созревания можно заподозрить синдром Клайнфельтера, поскольку внешне такие пациенты имеют ряд характерных признаков

До начала полового развития удается отметить только отдельные физические признаки, такие как длинные ноги, высокая талия, высокий рост. Пик прибавки роста приходится на период между 5 — 8 годами и средний рост взрослых пациентов составляет приблизительно 179.2 + 6.2 см[5][6].

К началу полового созревания формируются характерные пропорции тела: больные часто оказываются выше сверстников, но в отличие от типичного евнухоидизма размах рук у них редко превышает длину тела, ноги заметно длиннее туловища. Кроме того, некоторые дети с данным синдромом могут испытывать трудности в учёбе и в выражении своих мыслей. В некоторых руководствах указывается, что у пациентов с синдромом Клайнфельтера отмечается несколько сниженный объём яичек до периода полового созревания. Это утверждение является неверным, поскольку до периода полового созревания объём яичек у всех мальчиков небольшой — менее 1 мл[3]

В подростковом возрасте синдром чаще всего проявляется увеличением грудных желез, хотя в некоторых случаях этот признак может и отсутствовать. Также необходимо отметить что у 60-75 % подростков пубертатного возраста также отмечается увеличение грудных желез — пубертатная гинекомастия, которая, однако, самостоятельно проходит в течение 2-х лет, в то время как у пациентов с синдромом Клайнфельтера гинекомастия сохраняется на всю жизнь. Гинекомастия у пациентов с синдромом Клайнфельтера двусторонняя и, как правило, безболезненная. Ранее считалось, что при данном заболевании существует высокий риск рака грудных желез, однако, в исследовании, проведённом в Дании и включавшем 696 больных с синдромом Клайнфельтера[7], не наблюдалось увеличения риска рака молочных желез по сравнению со здоровыми мужчинами.

Считается, что типичным проявлением синдрома Клайнфельтера является наличие маленьких плотных яичек. Данный признак является патогмоничным для данного заболевания, практически не встречается при других формах гипогонадизма, однако, отмечается далеко не у всех пациентов с данным синдромом. Таким образом, отсутствие маленьких и плотных яичек не исключает наличия синдрома Клайнфельтера.

  1. Хромосомные болезни, связанные с нарушением структуры хромосом: синдромы частичной моносомии, синдромы частичной трисомии, транслокационный синдром Дауна. Генетическая основа, основные клинические проявления и методы диагностики.

Хромосомные болезни, связанные с нарушением структуры хромосом, представляют большую группу синдромов частичных моно- или трисомии. Как правило, они возникают в результате структурных перестроек хромосом, имеющихся вполовых клетках родителей, которые вследствие нарушения процессов рекомбинации в мейозе приводят к утрате или избытку фрагментов хромосом, вовлеченных в перестройку. Частичные моно- или трисомии известны практически повсем хромосомам, но лишь некоторые из них формируют четко диагностируемые клинические синдромы. Фенотипические проявления этих синдромов более полиморфны, чем синдромов целых моно- и трисомии. Отчасти этосвязано с тем, что размеры фрагментов хромосом и, следовательно, их генный состав, могут варьировать в каждом отдельном случае, а также тем, что при наличии хромосомной транслокации у одного из родителей частичная трисомия поодной хромосоме у ребенка может сочетаться с частичной моносомией по другой.

Клинико-цитогенетическая характеристика синдромов, связанных с числовыми аномалиями хромосом

Синдром трисомии хромосомы 8. Впервые описан в 1962 году. Популяционная частота 1 на 50000. Возникает врезультате нерасхождения хромосом на ранних стадиях бластулы, кроме редких случаев мутаций de novo в гаметогенезе. Цитогенетически выявляются как полные, так и мозаичные формы, которые составляют до 90% всех случаев. Различий поклинической картине таких форм нет. Не обнаружено корреляции между тяжестью заболевания и долей мозаичного клона.

Основными диагностическими признаками данного синдрома являются: макроцефалия, микрогнатия, вывернутая нижняя губа, массивный выступающий лоб, широкая спинка носа, высокое акровидное небо, большие оттопыренные уши с выступающим противозавитком. Кроме того, имеются аномалии скелета, выражающиеся в добавочных ребрах и позвонках, закрытые спинномозговые грыжи в шейном и грудном отделах позвоночника, аплазия и гипоплазия надколенника, короткая шея. Имеются множественные контрактуры суставов, клинодактилия, камптодактилия. Распространены пороки мочевой системы, особенно гидронефроз. Диагностируют пороки сердца, особенно дефекты перегородок и крупных сосудов. Интеллект у больных снижен, отмечена задержка психомоторного и речевого развития. Прогноз физического, психического развития и жизни неблагоприятный, хотя и отмечены пациенты в возрасте 17 лет.

Синдром трисомии хромосомы 9. Описан в 1970 году. В основе этиологии лежит нерасхождение хромосом на раннихстадиях бластулы, кроме редких случаев мутаций de novo в гаметогенезе. Цитогенетически отмечены полные формытрисомии и мозаики (50%). Мутации de novo составляют 1/3 всех описанных случаев. Кроме полных аутосомных трисомийхромосомы 9 выявлены также делеции дистального участка ее длинного плеча. Транслокационные варианты встречаются редко.

Основными диагностическими признаками синдрома трисомий 9 являются: микроцефалия (долихоцефалия), глубокопосаженные глаза, высокий лоб, широкая переносица, бульбообразный нос, высокое небо, часто с расщелиной, микроретрогнатия. Ушные раковины деформированы и низко посажены, отмечается короткая шея с низкой линией роста волос. Наблюдаются аномалии развития опорно-двигательного аппарата, включающие дисплазию тазобедренного сустава, вывих локтевого или коленного суставов, аномалии ребер. У мальчиков выражен крипторхизм и микропенис. Из патологии внутренних органов, в основном, отмечена патология сердечно-сосудистой системы, почек, комплексные порокижелудочно-кишечного тракта. Прогноз жизни неблагоприятный. Большинство больных погибают в первые 4 месяца жизни, особенно от респираторных инфекций.

Синдром Патау (трисомия по хромосоме 13). Впервые описан в 1960 году. Популяционная частота 1 на 7800. Цитогенетические варианты могут быть различны: целая трисомия 13 (нерасхождение хромосом в мейозе, в 80% случаев уматери), транслокационный вариант (робертсоновские транслокации D/13 и G/13), мозаичные формы, дополнительная кольцевая хромосома 13, изохромосомы.

Для синдрома Патау характерны следующие диагностические признаки: микроцефалия, расщелина верхней губы и неба, низко посаженные деформированные ушные раковины, микрогения, полидактилия, флексорное положение пальцев рук, выпуклые ногти, поперечная ладонная складка, стопа-качалка. Из пороков внутренних органов отмечены врожденные пороки сердца (дефекты перегородок и крупных сосудов), незавершенный поворот кишечника, дивертикул Меккеля, поликистоз почек, удвоение мочеточника. Наблюдается крипторхизм, гипоплазия наружных половых органов, удвоениематки и влагалища. Глубокая идиотия. Дети, в основном, умирают в возрасте до 1 года, чаще в первые 2-3 месяца жизни.

Синдром трисомий хромосомы 14. Описан в 1975 году. Основными цитогенетическими формами являются мозаики. Кроме того, часто встречаются транслокационные варианты, включающие робертсоновские транслокации 14/14.

Основными диагностическими признаками синдрома являются: микроцефалия, асимметрия лица, высокий и выступающийлоб, нос короткий и бульбообразный, губы полные, высокое небо, часто с расщелинами, микроретрогнатия. Ушные раковины низко посажены, с маленькими мочками. Короткая шея, узкая и деформированная грудная клетка, крипторхизм, гипогонадизм и маленький пенис. Из пороков внутренних органов выражены пороки сердечно-сосудистой системы, смещение почки и почечная недостаточность, астма и дерматозы. Прогноз жизни неблагоприятный, однако отмечены больные в возрасте 13,5 лет.

Синдром Эдвардса (трисомия по хромосоме 18). Описан в 1960 году. Популяционная частота составляет 1 на 6500. Цитогенетически в большинстве случаев представлен целой трисомиеи 18 (гаметическая мутация одного из родителей, чаще по материнской линии). Кроме того, встречаются и мозаичные формы, а транслокации наблюдаются очень редко. Критическим сегментом, ответственным за формирование основных признаков синдрома, является сегмент 18q11. Клинических различий между цитогенетическими формами не обнаружено.

Дети с синдромом Эдвардса имеют малую массу тела при рождении. Основными диагностическими признакамисиндрома являются: долихоцефалия, гипертелоризм, низко посаженные аномальной формы уши, микрогнатия, микростомия, скошенный подбородок. Имеются аномалии развития конечностей: верхних - сгибательные деформациипальцев, перекрывание пальцев, сжатые пальцы рук, гипоплазия ногтей (особенно V пальца); нижних - короткий и широкий палец стопы, типичная форма стопы в виде качалки, кожная синдактилия стоп. Из внутренних пороков следует отметить комбинированные пороки сердечно-сосудистой системы, незавершенный поворот кишечника пороки развития почекчаще гидронефроз и подковообразная почка), крипторхизм. Отмечается задержка психомоторного развития, идиотия и имбецильность. Дети погибают, в основном, в возрасте до 1 года от осложнений, вызванных врожденными порока миразвития.

Синдром Дауна (трисомия хромосомы 21). Впервые описан в 1866 году английским врачом Дауном. Наиболее часто встречающийся хромосомный синдром - популяционная частота составляет 1 случай на 600-700 новорожденных детей. Частота рождения детей с данным синдромом зависит от возраста матери и резко увеличивается после 35 лет. Цитогенетические варианты очень разнообразны, но около 95% случаев представлены простой трисомиеи 21 хромосомы, врезультате нерасхождения хромосом в мейозе у родителей. Наличие полиморфных молекулярно-генетических маркеров позволяет определить конкретного родителя и стадию мейоза в которой произошло нерасхождение (М1 - нерасхождениетомологичных хромосом 21 и М2 - нерасхождение хроматид). Несмотря на интенсивное изучение синдрома причинынерасхождения хромосом до настоящего времени не ясны. Этиологически важными факторами считаются внутри и внефолликулярное перезревание яйцеклетки, снижение числа или отсутствие хиазм в 1-м делении мейоза. Отмечены мозаичные формы синдрома (2%), робертсоновские транслокационные варианты (4%). Около 50% транслокационных форм наследуются от родителей и 50% являются мутациями de novo. Критическим сегментом, ответственным заформирование основных признаков синдрома, является область 21 q22.

Основными диагностическими признаками синдрома являются: типичное плоское лицо, монголоидный разрез глаз, эпикант, открытый рот, макроглоссия и аномалии зубов, короткий нос и плоская переносица, избыток кожи на шее, короткие конечности, поперечная четырех-пальцевая ладонная складка (обезьянья борозда). Из пороков внутренних органов часто отмечаются врожденные пороки сердца и желудочно-кишечного тракта, которые и определяют продолжительность жизни больных. Умственная отсталость обычно средней степени тяжести. Дети с синдромом Дауна часто ласковые и привязчивые, послушные и внимательные.

  1. Медико-генетическое консультирование: цель, задачи, этапы работы, значение.

Медико-генетическое консультирование - это вид специализированной медицинской помощи, целью которого является предупреждение наследственных болезней, это наиважнейший метод профилактики наследственных болезней. Впервые в мире оно было организовано в 1929 году на базе Института нервно-психической профилактики С. Н.Давиденковым. Это был первый шаг врача-генетика на пути советов семье и пропаганды медико-генетических знаний среди пациентов, составляющих, как мы сейчас говорим, «группу повышенного риска» с точки зрения наличия патологического гена.

Эффективность метода высока, 15— 17% врожденных пороков развития могут быть реально снижены путем его организации. Она в первую очередь зависит от того, когда, в какие сроки и по какому поводу семья обратилась к генетику за помощью. Часто бывает, что муж и жена (самостоятельно или по совету доктора) приходят на медико-генетическое консультирование, уже имея в семье больного ребенка, а иногда и нескольких. Приходят, чтобы узнать, какая участь ожидает очередного малыша, если они решаются еще на одни роды, и насколько реальна новая угроза появления наследственной болезни. Такого рода консультирование специалисты-генетики именуют ретроспективным.

Для проведения проспективного консультирования необходимо знание законов наследования причин заболеваний по которым можно предсказывать возможность появления врожденных болезней с весьма высокой степенью вероятности и разъяснять людям, собирающимся вступать в брак, насколько велик риск появления у них потомства с дефектной наследственностью.

Отмечаемый 3—5% риск возникновения наследственных заболеваний — явление закономерное. Это та доля, которую вносят в природный процесс продолжения рода спонтанные мутации, то есть естественная наследственная изменчивость, а потому возможно и выявление скрытых наследственных факторов, полученных будущими родителями от одного из предшествующих поколений.

Объектом исследования в медико-генетических консультациях является не только больной, но и его семья, поскольку диагноз в ряде случаев невозможно поставить без обследования всех членов семьи. В деятельности медико-генетических консультаций постоянно возникает не только медицинские, но и серьезные этические и правовые вопросы. Современная медицинская генетика не может дать однозначной рекомендации относительно деторождения, она может установить лишь степень генетического риска. Обычно при высокой степени риска (более 20%) генетик не рекомендует деторождение, но окончатель­ное решение принимают родители.

Главная цель медико-генетического консультирования — предупреждение рождения больного ребенка.

Главная задача такого консультирования: распознав или обнаружив в родословной обратившихся за советом людей патологический ген, врач предупреждает об опасности, грозящей их потомству.

Задачи:

Определение прогноза здоровья для будущего потомства в семьях, где есть риск наследственной патологии;

Помощь в принятии решения по поводу деторождения в зависимости от степени риска;

  1. Генетика популяций. Популяционная структура человечества. Характерные особенности генофонда популяции. Факторы, определяющие генетическую структуру популяции: механизмы, сохраняющие и нарушающие генетический гомеостаз. Роль системы браков в распределении аллелей в популяции. Популяционно-статистический метод.

Популяция- наименьшая единица эволюции, со своей генетической средой. Имеют ряд характеристик, в том числе и генетическую.

Генофонд – совокупность всех генов популяции. Характеризующийся 1) ген. Полиморфизмом 2) ген. Единством 3) динамическим равновесием генов и генотипов.

Генетический гомеостаз – поддержание концентрации генов в популяции на определенном уровне (четвериков)

Сохраняется : поддержанием отбора гетерозигот, отбором полиморфизма

Нарушается : мутации, миграции, отбор, популяционные волны, инбридинг, изоляция.

Поддержание отбором гетерозигот – гетерозиготы имеют преимущество в любой популяции за счет присутствия в генотипе разных вариантов аллелей, больше приспособлемы к условиям внешней среды, больше жизнеспособны.

Полиморфизм- существование в популяции разных форм, имеет приспособит. Значение.

Генетический полиморфизм – разнообразие ДНК, источником служит изменение в структуре молекулы ДНК, на разных уровнях организации насл. Материала.

Генокопии- одинаковые фенотипические проявления мутаций разных генов.

Фенокопии- явления, когда признак под действием внешней среды копирует признаки наследственного заболевания.

Межлокуснаяя гетерогенность( мутации разных генов, разных хромосом)

Мутации разных локусов одной хромосомы

Внутрилокусная гетерогенность

Фенотипический полиморфизм

Источник-генотипический полиморфизм, т.е разнообразие генотипа. Фенотип никогда строго не будет соответствовать генотипу, на процесс реализации признака будет оказывать влияние генное окружение, норма реакции, окружающая среда.

Уровни проявления фен. Полиморфизма

Биохимический, антигенный, клинический.

Система браков

Панмиксия – случайный подбор

Инбридинг- система родственных браков, инцест кровный брак

Аутобридинг- неродственные формы одного вида, неродственный брак, нет общих предков в 4-6 поколениях.

Дем- субпопуляция входящая в состав большой популяции, численность 1,5 – 4 тыс.чел. характеризуется малым% представ. Других групп Изолят- небольшая популяция, до 1,5 тыс.чел, представители др.групп 1%. положительный ассоциативный брак- неродственный брак, люди схожие по фенотипическим признакам. Отрицательный ассоциативный брак- неродственный брак, люди отличаются по фенотипическим признакам, которые составляют для них проблему.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]