Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / 2 семестр / Биогеография / Абдурахманов 'Биогеография'.doc
Скачиваний:
342
Добавлен:
07.07.2018
Размер:
16.21 Mб
Скачать

Биологическая продуктивность

Способность накапливать энергию солнечного света в органическом веществе называется продуктивностью живых организмов. Даже при оптимальных условиях растения на суше могут использовать лишь несколько процентов видимого излучения Солнца, а коэффициент полезного действия для всей поверхности суши составляет 0,1 - 0,3 %.

Как было сказано выше, выделяют три основные группы организмов: продуценты - зеленые растения, способные к фотосинтезу, и бактерии, осуществляющие хемосинтез, т. е. организмы, дающие первичную продукцию;консументы - организмы, потребляющие первичную или вторичную продукцию, т. е. потребляющие готовое органическое вещество и переводящие его в другие формы органического вещества (животные, паразитические растения и др.);редуценты (деструкторы) - организмы, живущие за счет мертвых органических веществ и разлагающие их до минеральных веществ (многие бактерии, грибы и некоторые животные).

В свою очередь, консументы подразделяют на три подгруппы: консументы первого порядка - растительноядные организмы, фитофаги, потребители органического вещества, доставляемого растениями; консументы второго порядка - хищники и паразиты, питающиеся растительноядными организмами; консументы третьего порядка - хищники и паразиты, питающиеся хищными животными и паразитами. Представители последних двух групп называютсязоофагами. Это подразделение в известной степени условно: имеется значительное количество всеядных животных,эврифагов, питающихся и растительной и животной пищей. Кроме того, животные, как указывал М.С. Гиляров (1965), не только переводят органическое вещество из одного вида в другой, но и

54

выделяют минеральные или органические легко минерализующиеся вещества, т. е. являются как консументами, так и в некоторой степени редуцентами. Таким образом, разделение организмов на три группы соответствует их роли в превращении вещества. Обмен веществ, происходящий в природе, возможен только при участии представителей всех трех групп организмов.

Скорость процессов обмена веществ, происходящих на нашей планете, кажется несовместимой с незначительной массой живого вещества, которая составляет примерно 0,01 % массы земной коры в слое 16 км. Приведем основные термины, используемые при рассмотрении изменений биомассы и биологической продукции.

Биомасса - масса организмов, присутствующих в экосистеме в момент наблюдения и учтенная на единицу площади; она может быть выражена в единицах массы и энергии (калориях).

Продукция - количество органического вещества, создаваемого в единицу времени на единицу площади.

Первичная валовая продукция в) - суммарная продукция фотосинтеза (суммарная ассимиляция), включающая, следовательно, и вещество, сжигаемое при дыхании за единицу времени. Чистая первичная продукция определяется эффективностью фотосинтеза, которая зависит от чистой продуктивности фотосинтеза, площади фотосинтезирующих органов, а также от длительности периода активного фотосинтеза;чистая продукция ч) - это вещество, которое можно взвесить при уборке урожая. Наконец,вторичная продукция 2) - биомасса, создаваемая консументами.

Продуценты начинают собой трофические (пищевые) цепи. Трофические цепи образуют последовательность иерархических уровней, начинающуюся уровнем создания продукции, за которым следуют несколько уровней потребления.

Масса организмов (биомасса) какого-либо трофического уровня характеризуется некоторым количеством энергии, накопленной на этом уровне и находящейся в химической форме. Поток энергии, проходящий через трофический уровень, представляет собой суммарную ассимиляцию на этом уровне, или сумму продуцируемой биомассы и веществ, затраченных в процессе продуцирования на дыхание. Согласно второму закону термодинамики, при переходе с одного уровня на другой значительная часть потенциальной энергии каждый раз теряется. Уже в момент соприкосновения солнечной энергии с уровнем продуцентов большая ее часть рассеивается в форме теплоты, лишь 1 % используется на фотосинтез. Точно так же переходы через различные уровни потребления сопровождаются значительными потерями вещества, а следовательно, и химической энергии. Судьба органического вещества какого-либо трофического уровня, которое служит кормом

55

организмам вышестоящего уровня, неоднозначна: значительная часть его выбрасывается в форме неассимилированных экскрементов, становящихся началом цепей питания сапрофагов; заметная доля ассимилированной пищи сгорает в процессе дыхания, остальная служит материалом для образования новой протоплазмы. Таким образом, в потоке сохраняется лишь малая часть потенциальной энергии предыдущего уровня, тогда как ее большая часть рассеивается в форме теплоты.

Трофические цепи можно разделить на три важнейшие группы.

1. Цепи зеленых растений, или так называемые "пастбищные" пищевые цепи, начинаются зелеными растениями или водорослями, создающими органическое вещество путем фотосинтетической фиксации СО2. Затем эта цепь разветвляется на несколько потоков, в том числе продолжается фитофагами (потребителями зеленых растений) - насекомыми, нематодами, моллюсками, млекопитающими, птицами, - а далее потребителями фитофагов: хищниками и паразитами.

2. Детритные пищевые цепи начинаются с мертвого органического вещества, созданного ранее растениями и неиспользованного в пастбищной цепи. Здесь возможно несколько вариантов, в том числе цепи морского и пресноводного планктона, где первое звено гетеротрофов представлено бактериями - потребителями растворенного или дисперсного органического вещества, а далее цепь продолжают бактериофаги и хищники нескольких трофических уровней. Другой вариант - цепи почвенных микофагов (потребителей грибов), которые начинают грибы, разлагающие мертвые растительные остатки, а продолжают бесчисленные потребители грибов, их хищники и паразиты. Существуют и цепи"собственно детритофагов" (дождевых червей, моллюсков, грунтоядов морей и пресных вод), которые, заглатывая разлагающиеся органические вещества, переваривают в первую очередь микробов, осуществляющих это разложение, и продукты их метаболизма. У этих животных есть множество своих врагов (хищников и паразитов), так что эта цепь, особенно в море, может состоять из 5 - 6 звеньев.

3. Цепи "хемобиоса", образующиеся в донных осадках, на разломах океанической коры и в почвах автотрофными бактериями, способными к получению энергии за счет восстановления серы или окисления неорганических веществ.

Приводимая типология трофических цепей, как было показано Д. А. Криволуцким и А. Д. Покаржевским (1985), не является единственно возможной: ее можно строить по движению по цепи не только органического вещества, т.е. соединений углерода, но и азота, водорода или серы. Интересно отметить, что в любой трофической цепи обязательно присутствует "микробиальное звено" или в виде "внешнего" компонента в открытой среде, или в

56

виде "внутреннего" звена в кишечниках потребляющих органические вещества животных, поскольку основные по массе органические соединения экосистем (гумус, лигнины, целлюлозу) могут перерабатывать только микробы.

На рис. 2 схематически показан поток энергии через три уровня простой цепи питания. Чистая продукция (Пч) равна первичной валовой продукции (Пв) за вычетом потерь на дыхание (Д1):

Пч= Пв- Д1.

Легче всего измерить величины Пч(фактически продуцированная биомасса за период исследования) и Д1(по количеству выделенного СО2). Следовательно, суммарная ассимиляция продуцентов, или их валовая продукция,

Пв= Пч+ Д1.

Часть созданных продуцентами веществ служит кормом (К) растительноядным животным; остальная часть их (Н) оказывается неиспользованной; она в конце концов отмирает и поступает в пищу биоредуцентам. Из количества пищи К, съеденной растительноядными, некоторое количество (А2) ассимилируется, а часть выбрасывается в форме выделений и экскрементов (Э). Из ассимилированного корма (А2) лишь часть идет на образование биомассы растительноядных животных; для создания биомассы используется энергия, выделяемая при дыхании, на что и затрачивается

Рис. 2. Поток энергии через три уровня простой кормовой цепи (П.Дювиньо, М.Танг, 1968): С - свет; Пв - валовая продукция; Пч - чистая продукция; П2, П3 - вторичная продукция; Д1-Д3 - потери на дыхание; К - корм; Н - неиспользуемая энергия; А2 - энергия, ассимилированная в зоомассе; А3 - энергия, ассимилированная хищниками; Э - экскреты, отходы

57

вторая часть ассимилированного корма. Следовательно, вторичная продуктивность (на уровне растительноядных) определяется формулой

П2= А22.

Поток энергии, проходящий через первый уровень потребления,

А2= П22.

Хищники не истребляют всех возможных жертв, а из той доли, которую они пожирают и ассимилируют, лишь одна часть вещества используется на создание биомассы этого уровня; другая часть затрачивается на дыхательную энергию.

Поток энергии, проходящий через трофический уровень плотоядных, определяется формулой

А33+ Д3.

Как видно, продукцию, или поток энергии, можно выразить в граммах созданного или ассимилированного вещества (в переводе на сухую массу) за единицу времени. При этом следует принять во внимание, что равные количества различных биологических веществ не обязательно равны и по своим энергетическим показателям. Чтобы измерить поток энергии, протекающий через экосистему в форме ассимилированных органических веществ, необходимо количество последних выразить в одинаковых единицах этой энергии, работы, теплоты (кДж). Обычно принимают следующие соотношения: для 1 г углеводов - 4 кДж; протеинов - 4; липидов - 9; стволовой древесины - 4,5; живых листьев - 4,7; лесной подстилки - 4,5 кДж. Следовательно, при сжигании 1 г абсолютно сухого вещества выделяется 4 кДж энергии.

Представленная схема иллюстрирует хорошо известное явление: живые существа с большими потерями трансформируют энергию; поток энергии (ассимилированного вещества) по пищевой цепи с каждым новым трофическим уровнем резко уменьшается. Иначе говоря, трансформации, происходящие в звеньях цепи питания, имеют очень низкий коэффициент полезного действия.

Экологическая эффективность природной экосистемы определяется отношением (выраженным в %) величины ассимиляции на данном уровне трофической цепи к величине ассимиляции на предыдущем уровне:

А2

Пв

 100%;

A3

A2

 100%

Эта эффективность всегда очень низка.

Если расположить один над другим прямоугольники, длина которых пропорциональна потоку энергии или продуктивности

58

каждого уровня, то получитсяэкологическая пирамида (пирамида энергии, пирамида продуктивности); высота пирамиды соответствует длине пищевой цепи (при удлинении цепи число прямоугольников в пирамиде становится больше). При изображении кормовых цепей хищников, если рассматривается только число особей или их биомасса, получаются пирамиды, подобные показанным (пирамиды чисел, пирамиды биомасс). Главной характеристикой наземной экосистемы можно считать продуктивность растительного покрова, иными словами, - поток энергии на уровне продуцентов. В 6 т древесины и 4 т листвы, полученных с 1 га леса, содержится 46 млн кДж энергии.

Следует заметить, что эти цифры определяют чистую продукцию; валовая продукция намного больше. В буковом лесу Центральной Европы в возрасте от 40 до 60 лет активность экосистемы достигает максимума: листья синтезируют 23,5 т вещества на 1 га/год. В ветви, ствол и корни направляется 16,2 т, но 40 % из них в течение года составят потери на дыхание и опад отмерших частей. Из 7,3т вещества, оставшегося в листьях, 65 % затрачивается на дыхание, если считать, что опад мертвой листвы составит лишь 2,5 т.

Таким образом, почти половина углеводов, созданных в процессе фотосинтеза (более 10 т/га), расходуется на дыхание и, следовательно, утрачивается.

В табл. 1 представлена годовая продукция ряда ценных культур, у которых используют лишь надземные части.

Таблица 1

Средняя годовая продукция некоторых культур (растения целиком), тонны сухого вещества с 1 га(Ю.Одум, 1959)

59

Измерения в природе свидетельствуют о том, что продукция, равная 10 т органического вещества на 1 га в год, характерна для многих типов растительности. Эта величина соответствует ежегодной чистой продукции - 2,75 г сухого вещества на 1 м2в день; валовую продукцию можно считать примерно вдвое большей (5,5 г на 1 м2в день).

Все живое вещество суши составляет 6,4 · 1018г, а живое вещество океана - 29,9 · 1015г. Таким образом, биомасса океана примерно на три порядка меньше биомассы суши. Почти все живое вещество суши образовано растениями, биомасса животных составляет всего 0,006·1018г, в океане же на долю биомассы растений приходится 1,1 · 1015г, на долю биомассы животных - 28,8· 1015г. На суше биомасса растений примерно на три порядка больше биомассы животных, в океане же биомасса животных примерно в 28 раз выше биомассы растений.

Можно попытаться обобщить все изложенное выше и определить, согласно Ю.Одуму (1959), мировое распределение первичной продукции.

1. Очень низкой продуктивностью обладают океанические глубины и пустыни (0,1 г/м2в день). Хотя ограничивающие факторы двух сред совершенно различны (в океанах - питательные вещества, в пустынях - вода), как различны и продуцирующие организмы (водоросли - в океанах), глубины океанов и аридные территории по продуктивности можно рассматривать как пустыни.

2. Сходной низкой продуктивностью (0,5 - 3 г/м2в день) характеризуются травяные формации, морские литорали и плохо культивированные земли.

3. Продуктивностью от 10 до 20 г/м2в день обладают влажные леса, земли с интенсивным сельскохозяйственным использованием, аллювиальные формации, эстуарии и коралловые рифы. Максимально возможная продуктивность экосистемы, по-видимому, не может превышать 25 г/м2в день.

Значительные скопления биомассы на суше наблюдаются в лесах. Биомасса травяной растительности земного шара в 5- 10 раз меньше биомассы растительности лесов.

60