Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копылов учебник (doc) / Глава 3 Конструкция и схемы обмоток электрических машин.doc
Скачиваний:
310
Добавлен:
03.08.2018
Размер:
6.92 Mб
Скачать

3.8. Схемы двухслойных обмоток

Двухслойные обмотки применяют, практически, во всех маши­нах переменного тока, начиная с машин мощностью 15...16 кВт и кончая крупными турбо- и гидрогенераторами. Основным достоин­ством двухслойных обмоток является возможность использования укорочения шага для подавления высших гармоник в кривой ЭДС. Кроме того, двухслойные обмотки имеют ряд существенных преи­муществ по сравнению с однослойными, например по количеству возможных вариантов выполнения параллельных ветвей, дробного числа пазов на полюс и фазу, равномерности расположения лобовых частей катушек и др.

Составим схему обмотки статора трехфазной машины с Z = 24, 2р = 4, a = 1. На рис. 3.22. а изображены 24 пары линий (сплошные и пунктирные)лежащих в пазах, и разделенные на четыре полюсных деления. На полюсном делении на каждую фазу приходится по два паза, так как q = 2. Стрелками на сплошных линиях, соответствующих верхним сторонам катушек, показано мгновенное направление токов в катушках, одинаковое во всех фазах в пределах одного полюсного де­ления и изменяющееся на обратное при переходе к следующему, т. е.

проделаны те же построения, что и в примере на рис. 3.16. Стрелки на пунктирных линиях, соответствующих сторонам катушек, лежащих в нижнем слое паза, не показаны. Направления токов в них зависят от шага обмотки.

Для наиболее простого случая при диаметральном шаге у = τ лобовые части соединяют стороны катушек, лежащие на расстоянии полюсного деления друг от друга. Это соединение показано на рис.3.22, б для катушек, верхние стороны которых расположены в сосед­них пазах на полюсном делении и занимают одну фазную зону. В рассматриваемом примере таких катушек две, так как q = 2. Сое­диненные последовательно, они образуют одну катушечную группу фазы обмотки.

Всего катушечных групп в одной фазе двухслойной обмотки столько же, сколько полюсов. На рис. 3.22. в все катушки одной фазы соединены в катушечные группы, а группы — между собой. Для того чтобы направления мгновенных значений токов, отме­ченные стрелками, сохранились, катушечные группы соединяют между собой встречно, т. е. конец первой группы с концом вто­рой, начало второй с началом третьей и т. д. При этом направле­ние обтекания током катушечных групп (показано стрелками над катушечными группами) при переходе от одного полюсного деле­ния к другому меняется на обратное. Обмотки остальных фаз строят аналогично.

Рис. 3.22. К построению схем двухслойных обмоток:

а – Распределение пазов по полюсным делениям; б – образование катушечной группы;

в – соединение катушечных групп одной фазы обмотки

Особенность такой схемы — число катушечных групп в фазе равно числу полюсов при встречном включении следующих друг за другом в фазе катушечных групп — является закономерностью для всех двухслойных обмоток с 60-градусной фазной зоной.

На рис. 3.23 приведена полная схема обмотки с диаметральным шагом, Z = 24, 2р = 4, а = 1. Начала фаз VI и W1 взяты последовате­льно через 2q пазовых делений по отношению к началу первой фазы — U1, т. е. через число пазов, соответствующих электрическо­му углу 120°.

Любое укорочение шага или изменение числа q не меняет прин­ципа построения схемы. При укороченном шаге меняется только ширина катушек (рис. 3.24). Все соединения, как междукатушечные, так и межгрупповые, остаются такими же. Сравнивая между собой схемы обмоток с диаметральным и укороченным шагами, следует отметить, что в первом случае в каждом из пазов размещены сторо­ны катушек, принадлежащих одной и той же фазе. При укорочении шага в части пазов размещают стороны катушек, принадлежащих разным фазам, например в пазах 2, 4, 6, 8 и др. (см. рис 3.24). Относительное количество таких пазов по сравнению с пазами, занятыми сторонами катушек только одной фазы, зависит от принятого укорочения шага. С уменьшением оно возрастает. Это является особен­ностью обмоток с укороченным шагом.

Рис. 3.23. Схема двухслойной обмотки с диаметральным шагом,

Z = 24, 2p = 4, у = τ = 6, a = 1

Рис. 3.23. Схема двухслойной обмотки с укороченным шагом,

Z = 24, 2p = 4, у = 5/6 τ = 5, a = 1

Рис. 3.25. Условная схема двухслойной обмотки ,

Z = 24, 2p = 4, a = 1

а – схема соединений трех фаз, б – схема соединений одной фазы

Анализ схем двухслойных обмоток удобнее проводить с помощью так называемых условных схем, которые используют в техниче­ской литературе наряду с развернутыми и торцевыми. В таких схемах, в отличие от развернутых, используют условные обозначения не отдельных катушек, а целиком катушечных групп обмотки. Это явля­ется логическим продолжением принятого в развернутой схеме упрощенного изображения катушки одним контуром независимо от дей­ствительного числа витков в ней, так как все катушки в катушечной группе соединяют между собой только последовательно.

Рис. 3.25, а является условной схемой обмоток, развернутые схемы которых изображены на рис. 3.23 и 3.24. В каждом прямоугольни­ке, обозначающем катушечную группу, выше диагонали проставлен порядковый номер катушечной группы (начиная с 1-й группы первой фазы) в последовательности расположения их по пазам статора. Ниже диагонали указано количество катушек в данной катушечной группе. Последняя запись введена, чтобы иметь возможность использовать условные схемы для обмоток с дробными числами пазов на полюс и фазу. На полях условной схемы конкретной обмотки должно быть указание о шаге обмотки,

так как и при диаметральном, и при укороченном шагах условная схема одна и та же.

Для облегчения анализа схемы от­метим стрелками над прямоугольника­ми, изображающими катушечные группы, направления обхода их витков током.

Из рис. 3.25, а видно, что соединения катушечных групп каждой фазы

Рис. 3.26. Условные схемы соединений фазы

обмотки с 2р=2 при различных числах параллельных ветвей:

а – при а = 1; б – при а = 2

обмотки полностью идентичны, поэтомуто же количество информации можетбыть представлено более компактно, т. е.изображением схемы только одной фазыобмотки при соответствующих надписяхна чертеже (рис. 3.25, б).

Такие схемы ясно показывают специ­фику межгрупповых соединений в обмот­ке,

практически формирующих нужную полюсность при заданном числе параллельных

ветвей, и позволяют рассматривать не отдельные схемы обмоток машин с раз­личными числами Z и q, а представлять их в виде типовых схем для любых Z при определенном числе полюсов.

Рис. 3.27 Условные схемы соединений фазы обмотки

с 2р = 4 в несколько параллельных ветвей:

а – при а = 2, б – при а = 4

Рассмотрим некоторые схемы двух­слойных обмоток с различным числом параллельных ветвей. На рис. 3.26, априведена условная схема обмотки двухполюсной машины (од­ной ее фазы), определяющая ее соединение при а = 1. При изменении числа параллельных ветвей

ванных катушечными группами, не должна меняться, поэтому не должны менять своего направления и стрелка над прямоугольниками на схеме обмотки.

Рис. 3.28. Условные схемы соединений фазы обмотки

с 2р=6 с несколькими параллельными ветвями:

а – при а = 1, б – при а = 2, в – при а = 3

Обмотку двухполюсных машин можно выполнить и при а = 2.Условная схема такой обмотки (2р = 2, а = 2) показана на рис. 3.26. б. Как видно, межгрупповые соединения изменены таким образом, что катушечные группы обра­зуют две параллельные ветви, но полярность полюсов остается прежней.

На рис. 3.25, б показана схема обмотки при 2р = 4, а = 1, а на рис. 3.27, в приведена схема обмотки с тем же числом полюсов, но при а = 2. Полярность катушечных групп в обеих схемах одна и та же. На рис. 3.27,б дана схема той же обмотки, но при а = 4. Условия сохранения полярности катушечных групп со­блюдены и при четырех параллель­ных ветвях.

Аналогичные варианты схем обмоток при нескольких параллельных ветвях для обмотки шестиполюсной машины приведены на рис. 3.28. Для а = 2 и а = 3 возможны иные, чем приведенные на ри­сунке, варианты соединений, при которых полярность катушечных групп остается правильной.

Принцип построения схем обмоток с большими числами пар по­люсов и другими возможными числами параллельных ветвей остается таким же [6].