Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций Архитектурное материаловедение.doc
Скачиваний:
59
Добавлен:
27.10.2018
Размер:
2.23 Mб
Скачать

7.4. Контроль качества

Бетон изготавливают в соответствии с классом бетона (В) с гарантией произво­дителями прочности на осевое сжатие в нормируемом проектном возрасте. На заводе при производстве сборных конструкций контроль прочности бетона проводят после ТВО и последующего твердения в естественных условиях в течение 28 суток, когда бетон должен набрать гаран­тированную прочность. На строительной площадке прочность бетона определяют перед нагружением конструкции и проектную после 28 суток естественного твердения. При возведении массивных монолитных сооружений на медленно твердеющих цементах (пуццолановом и шлакопортландцементе) контроль прочности проводят через 60, 90 и 180 суток твердения.

Определение прочности бетона при получении и возведении конструкций чаще всего проводят путем испытания на прессе специально отформованных образцов-спутников кубической формы определенного размера, твердевших вместе с бетонируемой конструкцией. Если оценивают несущую способность эксплуатируемых конструкций, то испытания проводят на выбуренных и выпиленных из бетон­ного массива образцах (кубах, цилиндрах) или используют неразрушающие методы контроля. Наиболее распространенными являются механический склерометический метод (по величине отскока) и ультразвуковой.

Под действием на бетон механических нагрузок в зависимости от их величи­ны, направления и времени действия в бетоне возникают дефор­мации, сначала упругие, а в случае превышения напряжения остаточные (пластические), сопровождаемые появле­нием микротрещин, приводящих в дальнейшем к разрушению бетона.

Наиболее опасны для хрупких материалов, каким является бетон, растягивающие напряжения и деформации в изгибаемой зоне конструкций, в которую для обеспечения на­дежной эксплуатации укладывают металлическую или стеклопластиковую проволочную, прутковую или канатную арматуру, а также, для повышения прочности бетона на изгиб по всему объему, примененяют дисперсное армиро­вание путем введения в бетонную смесь коротких (10...50 мм) и прочных тонких (0,1...0,5 мм) металлических, минеральных, полимерных, волокон (фибр). Фибробетон —также имеет повышенные показатели прочности на удар, ис­тирание и морозостойкость.

При изготовлении конструкций, условия работы которых связаны с действием больших растягивающих и изгибающих нагрузок (пролетные строения мостов, корпуса реакторов, телебашни и т.д.), применяют трещиностойкий преднапряженный железобетон, в котором наиболее полно используются несущие возможности бетона и арматуры. Бетон с аналогичными свойствами можно получить также за счет применения самонапрягающего цемента специально подобранного состава. Сжимающие напряжения в бетоне, ограниченном замкнутым объемом формы, возникают в результате образования крупнокристаллических продуктов гидратации цемента, приводящих к значительному расширению цементного камня. Марку по само­напряжению обозначают Sp и числом, выражающим значение самонапряжения в МПа, например Sp2,0. В обычных конструкциях (балки, перекрытия и т.д.) преднапряжение по­зволяет снизить материалоемкость и массу изделий, повысить их трещиностойкость и долговечность.

Возникающие в бетоне деформации являются следствием не только действия нагрузок, но и изменения температурно-влажностных условий эксплуатации. Наиболее чувствительным к ним является цементный камень, содержащий минералы как в кри­сталлическом, так и в менее устойчивом аморфном стеклообразном состоянии. Так называемые собственные деформации включают усадку при гидратации цемента (химическая контракция) и усадку в результате снижения влажности окружающей среды. Уменьшить собственные деформации можно за счет снижения объема цементного камня в бетоне, увеличения расхода крупно­го недеформируемого заполнителя и обеспечения влажного ре­жима твердения.

Температурные деформации в бетоне возникают из-за разных коэффициентов температурного расширения его составляющих. Колебания температуры в диапазоне 0...50°С не вызывают в сухом бетоне значительных деформаций, однако при наличии влаги в порах приводят к микроразрушениям. Рост деформаций при отрицательной температуре преимущественно связан с льдообразованием, сопро­вождаемым увеличением объема льда. При нагревании бетона во время ТВО, в связи с переходом воды в пар и увеличением его объема, происходит вспучивание недостаточно прочного «сырого» бетона. Для предотвращения деформаций в первом случае применяют технологические приемы по повышению морозостойкости бетона (увеличение плотности, создание микропористой замкнутой структуры). Во втором, ка­сающемся в большей степени технологии получения сборного железобетона, используют мягкие режимы с медленным нарас­танием и снижением температуры. Для уменьшения влияния температурных деформаций в массивных бетонных конструкциях и в конструкциях с большим модулем поверхности (дорожные покрытия) устраивают температурные швы, которые заполняют герметизирующими упругими проклад­ками или мастиками, воспринимающими и гасящими возникаю­щие деформации.

Повысить морозостойкость бетона можно или за счет повыше­ния его плотности и снижения объема открытых, капиллярных пор, или путем увеличения количества замкнутых воздухонаполненных резервных пор (до 4...6 %), которые уменьшают давление от замерзающей воды.

Для таких изделий, как напорные железобетонные трубы, емко­сти для хранения жидких продуктов, гидротехнические соору­жения (дамбы, мосты), условия эксплуатации которых связаны с односторонним действием жидкостей под давлением, водопро­ницаемость является важнейшим свойством бетона. Основное влияние на нее оказывают показатели структуры: общий объем пор, содержание замкнутых и капиллярных пор, их форма и раз­мер. Водоотделение и недоуплотнение бетонной смеси, появление микротрещин вследствие усадки бетона из-за действия нагрузки, попеременного увлажнения с последующим замораживанием или высыханием могут существенно снизить непроницаемость бетона.

Повысить водонепроницаемость бетона можно за счет:

  • использования многофракционного заполнителя, обеспечивающего его плотную упаковку с минимальным объемом пустот, которые для обеспечения монолитности заполняются цементным камнем;

  • сокращения расхода воды в сочетании с применением доба­вок — пластификаторов, суперпластификаторов — и интенсив­ным способом уплотнения бетонной смеси;

  • использования расширяющегося цемента и уплотняющих добавок;

  • пропитки и защиты бетонной поверхности полимерными со­ставами.