Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЗ исправлен.docx
Скачиваний:
57
Добавлен:
29.10.2018
Размер:
2.63 Mб
Скачать

3.4 Влияние фосфора

Фосфор в стали находится в виде твердого раствора в феррите или выделений фосфида железа Fe2P и благодаря этому увеличивает твердость железа, прочность и упругость, но одновременно снижает вязкость и особенно ударную вязкость. Влияние фосфора особенно резко обнаруживается в появлении у стали хладноломкости. Фосфор обусловливает склонность к образованию трещин при ударной деформации, при обыкновенной температуре и крупнозернистый излом. Такая сталь становится особенно хрупкой на морозе.

Влияние фосфора на сталь тем сильнее, чем больше в стали углерода. Входя в твердый раствор, фосфор способствует ликвации вследствие большого интервала затвердевания. Поэтому сталь, содержащая фосфор, дает весьма резко выраженную дендритную ликвацию, которая усиливается под влиянием углерода. Фосфор весьма медленно диффундирует в железе (гораздо медленнее, чем углерод). Во избежание местного скопления фосфора вследствие ликвации содержание фосфора в различных сортах стали в зависимости от ее назначения допускается лишь не более 0,02—0,07%. В виде исключения содержание фосфора умышленно увеличивается до 0,2% в

стали, идушей для производства болтов и гаек. Благодаря присутствию фосфора достигается более высокая хрупкость, обеспечивающая хорошую обрабатываемость и получение чистой резьбы без задиров.

3.5 Влияние серы

Сера в жидкой стали обладает неограниченной растворимостью и очень малой растворимостью в твердом состоянии. Как видно из рисунка, где приведен «железный» угол диаграммы состояния Fe-S для малых концентраций серы, предельная растворимость серы в железе при 1365° С составляет 0,05%, а при 1000° С 0,013%. В альфа-железе растворимость серы ничтожна.

Вследствие понижения растворимости во время кристаллизации стали и ее охлаждения сера выделяется из раствора в виде включений сульфидов FeS или оксисульфидов FeS-FeO. Выделение включений в конце затвердевания, когда имеются уже сформировавшиеся кристаллы, приводит к тому, что они располагаются по границам зерен, ослабляя их связь и ухудшая свойства металла.

При комнатной и близких к ней температурах включения сульфидов понижают механические свойства стали, характеризующие пластичность (относительные сужение и удлинение) и ударную вязкость. В литом металле это влияние может проявляться во всех направлениях. В катаных или кованых стальных изделиях, где сульфидные включения вытянуты в виде строчек в направлении горячей пластической деформации, отрицательное влияние серы в стали проявляется лишь в направлении, поперечном к линии вытяжки в процессе этой деформации.

Рисунок 2 - Железный угол диаграммы Fe-S

При температуре горячей обработки металла давлением (850-1200° С) сера в стали вызывает понижение технологической пластичности стали, называемое «красноломкостью» (потеря пластичности при температуре красного каления). Красноломкость проявляется в образовании рванин и трещин во время обработки давлением.

Причиной возникновения красноломкости является оплавление оксисульфидов и сульфидов по границам зерен, вызывающее разрушение металла в процессе обработки давлением. Как видно из диаграммы, приведенной на рисунке, это может происходить при содержании серы в стали более 0,01%, т. е. тогда, когда оно выше предела растворимости в гамма-железе.

Степень влияния серы на свойства стали зависит от характера сульфидных включений и их расположения в металле, что определяется воздействием некоторых сульфидообразующих элементов, вводимых в сталь для раскисления.

Раскисление будет подробно рассмотрено в следующем подразделе. Здесь же следует отметить лишь, что применяется оно для понижения содержания кислорода в металле.

Рисунок 3 - Типы сульфидов в литой стали, X 400

При раскислении стали марганцем и кремнием без алюминия или с небольшим количеством алюминия (до 0,006—0,02%) образуются сульфиды и преимущественно оксисульфиды в виде обособленных, беспорядочно разбросанных обычно крупных глобулей — I тип включений .

При более полном раскислении (удалении кислорода) алюминием сульфидные включения выпадают в виде цепочек мелких глобулей или пленок — II тип включений. Критическое содержание алюминия, при котором образуются включения второго типа, составляет примерно 0,01—0,10% в малоуглеродистой стали и 0,005—0,020% в средне- и высокоуглеродистой.

Дальнейшее увеличение количества вводимого в сталь алюминия приводит к образованию включений III типа, относительно крупных, обычно неправильной формы, беспорядочно расположенных в металле.

Эти включения состоят из сульфидов алюминия, марганца и железа.

Наиболее вредное влияние на механические свойства стали и склонность к красноломкости сера оказывает при образовании включений II типа. Влияние это меньше при образовании включений III типа и еще меньше при образовании включений I типа.

Особое влияние на склонность к возникновению красноломкости оказывает марганец. В стали, не содержащей марганца, красноломкость возникает при очень малой концентрации серы, критическая величина которой зависит от состава металла и условий деформации. Практикой металлургического производства установлено, что отношение концентраций марганца и серы, необходимое для получения высокой технологической пластичности металла, обеспечивающей горячую обработку давлением без возникновения красноломкости, равно 10—20 для стали с содержанием серы до 0,05%.

Однако радикальным средством уменьшения вредного влияния серы на свойства стали является понижение ее содержания.