Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biologia_lektsii.doc
Скачиваний:
49
Добавлен:
04.11.2018
Размер:
939.01 Кб
Скачать

Вопрос 64. Репарация

1. Световая репарация

2. Темновая репарация

1. Под действием различных физических и химических агентов и даже при нормальном биосинтезе в ДНК могут возникнуть по­вреждения. Оказалось, что клетки обладают способностью са­мостоятельно исправлять повреждения в молекуле ДНК. Этот феномен получил название репарации. Первоначально способ­ность к репарации была обнаружена у бактерий, подвергав­шихся воздействию ультрафиолетового излучения. В результате облучения целостность молекул ДНК нарушалась, так как в ней возникали димеры, т. е. сцепленные между собой соеди­нения в области оснований. Димеры образуются:

• между двумя тиминами;

• тимином и цитозином;

• двумя цитозинами;

• тимином и урацилом;

• двумя урацилами.

Облученные клетки на свету выживали гораздо лучше, чем в темноте. После тщательного анализа причин было установле­но, что в облученных клетках на свету происходит репарация. Она осуществляется специальным ферментом, активирующим­ся квантами видимого света. Фермент соединяется с повреж­денной ДНК, разъединяет возникшие в димерах связи и вос­станавливает целостность нити ДНК.

2. Позднее была обнаружена и темновая репарация, т. е. свойство клеток ликвидировать повреждения ДНК без участия видимого света. Темновая репарация осуществляется комплексом из пяти ферментов:

• узнающего химические изменения на участке цепи ДНК;

• осуществляющего вырезание поврежденного участка;

• удаляющего этот участок;

• синтезирующего новый участок по принципу комплементарно-сти взамен удаленного фрагмента;

• соединяющего концы старой цепи и восстановленного участка. При световой репарации исправляются повреждения, возник­шие только под воздействием ультрафиолетовых лучей, при темновой — повреждения, появившиеся под влиянием жесткой радиации, химических веществ и других факторов. Темновая репарация обнаружена у прокариот и в клетках эукариот. У последних она изучается в культурах тканей. Вопрос о том, почему одни повреждения репарируются, а другие нет, остает­ся открытым. Если репарация не наступает, то клетка гибнет либо наступает мутация.

Вопрос 65. Особенности передачи наследственной информации у про- и эукариот

/. Взаимодействие генных продуктов в цитоплазме

2. Различия в передаче наследственной информации в клетках прокариот и эукариот

1. В большинстве случаев отдельные гены, по-видимому, само­стоятельно не определяют характер признака. В явлениях ком-плементарности, эпистаза и плейотропии обнаруживается фе-нотипическое выражение молекулярных взаимодействий генов. В ряде экспериментов, проведенных в лабораторных условиях с ферментами, выделенными из организмов с различным гено­типом, показано, что механизм комплементарного взаимодей­ствия генов заключается во взаимодействии генных продуктов в цитоплазме.

2. Фундаментальные различия в передаче наследственной инфор­мации в клетках прокаритов и эукариот состоят в следующем:

у прокариот и-РНК, образующаяся на молекулах ДНК, немед­ленно приступает к синтезу белка на рибосомах;

у эукариот на молекулах ДНК образуется ДНК, подобная и-РНК и получившая название д-РНК. Она представляет со­бой высокомолекулярное соединение с относительной молеку­лярной массой 2 000 000-10 000 000. Информационная РНК (и-РНК), находящаяся в цитоплазме клеток животных, имеет молекулярную массу в пределах 200 000-600 000;

у эукариот д-РНК является предшественником и-РНК. Нахо­дясь еще в ядре, д-РНК "созревает", расщепляясь при участии ферментов на более короткие цепи РНК. Большая часть этих цепей распадается, и только незначительная часть — истинная и-РНК, выходит в цитоплазму. Вопрос о том, почему у эукаритотов образуется д-РНК и какова ее роль, остается неясным.

Соседние файлы в предмете Медицинская биология и генетика