Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KryvieVtorogoPoryadka.doc
Скачиваний:
7
Добавлен:
22.11.2018
Размер:
2.54 Mб
Скачать
  1. Параллельный перенос осей координат.

Даны две системы координат с разными началами и и одинаковыми направлениями осей (рис.1). Обозначим через и координаты произвольной точки соответственно в старой и новой системах координат. Если координаты нового начала в системе , то справедливы формулы преобразования параллельного переноса осей координат

, , или (2)

, .

Рис. 1 Рис. 2

  1. Поворот осей координат.

Даны две системы координат с одинаковым началом и разными направлениями осей. Пусть (рис.2) – угол между и (угол поворота системы координат). Справедливы формулы преобразования поворота осей координат

(3)

,

где координаты произвольной точки в , координаты этой точки в новой системе координат .

Образец задания

  1. Дано уравнение гиперболы в виде . Путем параллельного переноса системы координат привести ее уравнение к виду , указать асимптоты гиперболы, построить соответствующие системы координат и данную гиперболу по уравнению .

  2. Даны уравнения кривых второго порядка :

а) ,

б) .

Требуется по данному уравнению определить, какого типа кривую (эллиптического, гиперболического, параболического) оно представляет, затем следует привести это уравнение к каноническому виду с помощью параллельного переноса системы координат, построить соответствующие системы координат и кривую по ее каноническому уравнению.

  1. Дано уравнение кривой второго порядка

.

Требуется привести данное уравнение путем поворота и параллельного переноса системы координат к каноническому виду. Построить соответствующие системы координат и данную кривую по ее каноническому уравнению.

  1. а) Дано уравнение кривой в полярных координатах

.

Требуется построить эту кривую по ее полярному уравнению.

б) Дано уравнение кривой в прямоугольных декартовых координатах

.

Записать это уравнение в полярных координатах, а затем построить данную линию по ее полярному уравнению.

  1. Составить уравнение линии, каждая точка которой в два раза ближе к точке , чем к началу координат.

Решение задания 1.

Из школьного курса алгебры известно, что график функции есть гипербола, асимптоты которой параллельны и (см. Привалов, гл.5, §5, п.2). С другой стороны, график функции гипербола, асимптоты которой есть и . Таким образом, взяв за координатные оси асимптоты функции , мы приведем эту функцию к более простому виду (при этом пользуемся формулами преобразования параллельного переноса (2) ). Итак, в системе задана линия уравнением

.(4)

Выполним параллельный перенос системы по формулам (2)

, ,(2)

где координаты нового начала в системе ; координаты произвольной точки в системе ; координаты той же точки в системе .

Воспользовавшись формулами (2), запишем уравнение (4) в виде

.

Умножим обе части этого уравнения на выражение и раскроем скобки, получим

.

Сгруппируем члены, содержащие ,

.(5)

Выберем точку так, чтобы члены, содержащие , обратились в нуль, т.е. положим , откуда координаты нового начала. Подставим эти значения в уравнение (5), имеем , или

. (6)

Уравнение (6) – уравнение равнобочной гиперболы, асимптотами которой являются новые оси координат.

Изобразим обе системы координат и построим данную линию по ее уравнению (6) в системе координат (рис.3)

Рис. 3

Решение задания 2 (см. Привалов, гл.5, §6, п.3)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]