Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЫСШАЯ МАТЕМАТИКА2.docx
Скачиваний:
6
Добавлен:
25.11.2018
Размер:
277 Кб
Скачать

4. Геометрическая вероятность

Чтобы преодолеть недостаток классического опре­деления вероятности, состоящий в том, что оно непри­менимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности.

При геометрическом подходе к определению вероятности в качестве про­странства Q элементарных событий рассматривается произвольное множество конечной меры[1] на прямой, плоскости или в пространстве.

Событиями называются измеримые всевозможные подмножества множества Q.

В конкретных задачах испытание интерпретируется как случайный выбор точки в некоторой области Q, а событие А — как попадание выбранной точки в некоторую под­область А области Q. При этом требуется, чтобы все точки области Q имели оди­наковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т. Д.

Геометрическая вероятность – вероятность попа­дания точки в область (отрезок, часть плоскости или пространства).

Приведенные определения являются частными случаями общего определения геометрической вероятности. Обозначим меру (длину, площадь, объем) области через m(е). При этом вероятность попадания точки, брошенной наудачу в область g - часть области G, равна отношению мер областей g и G, соответственно равнее m(g) и m(G).

Формула геометрической вероятности в этом случае имеет вид: P=m(g) : m(G)

В случае классического определения вероят­ность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно).

В случае геометри­ческого определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.

Геометрическая вероятность на отрезке.

Пусть отрезок m составляет часть отрезка L. На отре­зок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок m пропорциональна длине этого отрезка и не зависит от его расположения относи­тельно отрезка L. В этих предположениях вероятность попадания точки на отрезок m определяется равенством

Р =( Длина m ) : /Длина L).

Пример. Вычислить геометрические вероятности на отрезке

1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине от­резка и не зависит от его расположения на числовой оси,

Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В(х) попа­дет на отрезок CD длины L/3. Искомая вероятность

P=(L/3) : L= l/3.

Практическая часть

  1. В ящике имеется 50 одинаковых деталей, из них 5 окра­шенных. Наудачу вынимают одну деталь. Найти вероятность того, что извлеченная деталь окажется окрашенной.

  2. Брошена игральная кость. Найти вероятность того, что выпа­дет четное число очков.

  3. Участники жеребьевки тянут из ящика жетоны с номерами от 1 др 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.

  4. В мешочке имеется 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о, п, р, с, т. Найти вероятность того, что на вынутых по одному и расположен­ных «в одну линию» кубиков можно будет прочесть слово «спорт».

  5. На каждой из шести одинаковых карточек напечатана одна нз следующих букв: а, т, м, р, с, о. Карточки тщательно переме­шаны. Найти вероятность того, что на четырех, вынутых по одной и расположенных «в одну линию» карточках можно будет прочесть слово «трос».

  6. Куб, все грани которого окрашены, распилен на тысячу куби­ков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлеченный кубик, будет иметь окрашенные грани: а) одну; б) две; в) три.

  7. Из тщательно перемешанного полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая кость: а) оказалась дублем; б) не есть дубль.

  8. В замке на общей оси пять дисков. Каждый диск разделен на шесть секторов, на которых написаны различные буквы. Замок открывается только в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Найти вероят­ность того, что при произвольной установке дисков замок можно будет открыть.

  9. Восемь различных книг расставляются наудачу на одной полке. Найти вероятность того, что две определенные книги ока­жутся поставленными рядом.

  10. Библиотечка состоит нз десяти различных книг, причем пять книг стоят по 4 рубля каждая, три книги — по одному рублю н две книги — по 3 рубля. Найти вероятность того, что взятые наудачу две книги стоят 5 рублей.

  11. 11.В партии из 100 деталей отдел технического контроля обна­ружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?

  12. 12.При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов.

Тема: Вычисление вероятностей с использованием элементов комбинаторики.