Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на зачет по Электроной технике.docx
Скачиваний:
4
Добавлен:
15.12.2018
Размер:
31.76 Кб
Скачать

Билет №4

Граница между двумя соседними областями полупроводника, одна из которых обладает проводимостью n-типа, а другая p-типа, называется электронно-дырочным переходом (p-n-переходом). Он является основой большинства полупроводниковых приборов. Наиболее широко применяются плоскостные и точечные p-n-переходы.

Плоскостной p-n-переход представляет собой слоисто-контактный элемент в объеме кристалла на границе двух полупроводников с проводимостями p- и n-типов

(рис. 1.2, а). В производстве полупроводниковых приборов и интегральных микросхем применяются переходы типа р+- n- или р- п+ переходы. Индекс «+» подчеркивает большую электропроводность данной области монокристалла.

Общая плотность тока через p-n-переход определяется суммой диффузионных и дрейфовых составляющих плотностей токов, которые при отсутствии внешнего напряжения равны. Так как диффузионный и дрейфовый потоки зарядов через p-n-переход перемещаются во встречном направлении, то они компенсируют друг друга. Поэтому в равновесном состоянии общая плотность тока через p-n-переход равна

Если подключить к p-n-переходу источник внешнего напряжения таким образом, чтобы плюс был приложен к области полупроводника n-типа, а минус – к области полупроводника p-типа (такое включение называют обратным, рис. 1.4), то обедненный слой расширяется, так как под воздействием внешнего напряжения электроны и дырки смещаются от p-n-перехода в разные стороны. При этом высота потенциального барьера также возрастает и становится равной jк+ u (рис. 1.5), поскольку напряжение внешнего смещения включено согласно контактной разности потенциалов.

Вольтамперная характеристика (ВАХ) p-n-перехода, построенная на основании выражений (1.10) и (1.11), имеет вид, показанный на рис. 1.8. Область ВАХ, лежащая в первом квадранте, соответствует прямому включению p-n-перехода, а лежащая в третьем квадранте – обратному. Как отмечалось выше, при достаточно большом обратном напряжении возникает пробой перехода. Пробоем называют резкое изменение режима работы перехода, находящегося под обратным напряжением.

Характерной особенностью этого изменения является резкое уменьшение дифференциального сопротивления перехода rдиф= du/di (u и i – напряжение на переходе и ток перехода соответственно). После начала пробоя незначительное увеличение обратного напряжения сопровождается резким увеличением обратного тока. В процессе пробоя ток может увеличиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление оказывается отрицательным). На ВАХ перехода (рис. 1.9) пробою соответствует область резкого изгиба характеристики вниз в третьем квадранте.

Различают три вида пробоя p-n-перехода: туннельный, лавинный и тепловой. И туннельный, и лавинный пробой принято называть электрическим пробоем.

Туннельный пробой происходит, когда геометрическое расстояние между валентной зоной и зоной проводимости (ширина барьера) достаточно мало, то возникает туннельный эффект – явление прохождения электронов сквозь потенциальный барьер. Туннельный пробой имеет место в р-n-переходах с базой, обладающей низким значением удельного сопротивления.

Механизм лавинного пробоя подобен механизму ударной ионизации в газах. Лавинный пробой возникает, если при движении до очередного соударения с атомом дырка (или электрон) приобретает энергию, достаточную для ионизации атома. В результате число носителей резко возрастает, и ток через переход растёт. Расстояние, которое проходит носитель заряда до соударения, называют длиной свободного пробега. Лавинный пробой имеет место в переходах с высокоомной базой (имеющей большое удельное сопротивление). Характерно, что при этом пробое напряжение на переходе мало зависит от тока через него (крутопадающий участок в третьем квадранте ВАХ, см. рис. 1.9).

При тепловом пробое увеличение тока объясняется разогревом полупроводника в области р-n-перехода и соответствующим увеличением удельной проводимости. Тепловой пробой характеризуется отрицательным дифференциальным сопротивлением. Если полупроводник – кремний, то при увеличении обратного напряжения тепловой пробой обычно возникает после электрического (во время электрического пробоя полупроводник разогревается, а затем начинается тепловой пробой). После электрического пробоя p-n-переход не изменяет своих свойств. После теплового пробоя, если полупроводник успел нагреться достаточно сильно, свойства перехода необратимо изменяются (полупроводниковый прибор выходит из строя).

_____________________________________________________________________________________________________________________