Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Преобразование сигналов 53-57.doc
Скачиваний:
6
Добавлен:
19.12.2018
Размер:
841.73 Кб
Скачать

1 Аппроксимация вольт-амперной характеристики нелинейной цепи

Методы аппроксимации

Как правило, ВАХ нелинейных элементов получают экспериментально, поэтому чаще всего они заданы в виде таблиц или графиков. Чтобы иметь дело с аналитическими выражениями, приходится прибегать к аппроксимации.

Методы аппроксимации, используемые в линейных цепях, могут быть использованы и для представления характеристик нелинейных цепей. Отличие будет состоять в выборе аналитических зависимостей, так как аппроксимации подлежат функции совершенно другого класса (в частности, ВАХ, а не АЧХ, ФЧХ и временные).

Обозначим заданную таблично или графически ВАХ нелинейного элемента , а аналитическую функцию, аппроксимирующую заданную характеристику, , где − коэффициенты этой функции, которые нужно найти в результате аппроксимации.

В методе Чебышева коэффициенты функции находятся из условия

, (1)

т. е. они определяются в процессе минимизации максимального уклонения аналитической функции от заданной. Здесь , − выбранные значения напряжения.

При среднеквадратичном приближении коэффициенты должны быть такими, чтобы минимизировать величину

. (2)

Приближение функции по Тейлору основано на представлении функции рядом Тейлора в окрестности точки

(3)

и определении коэффициентов этого разложения. Если ограничится первыми двумя членами разложения в ряд Тейлора, то, очевидно, речь пойдет о замене сложной нелинейной зависимости более простой линейной зависимостью. Такая замена называется линеаризацией характеристик.

Заметим, что первый член разложения (3) представляет собой постоянный ток в рабочей точке при , второй член – дифференциальную крутизну вольтамперной характеристики в рабочей точке, т.е. при

Наиболее распространенным способом приближения заданной характеристики является интерполяция (метод выбранных точек), при которой коэффициенты аппроксимирующей функции находятся из равенства этой функции и заданной в выбранных точках (узлах интерполяции)

Таким образом, задача аппроксимации ВАХ нелинейных элементов заключается в выборе вида аппроксимирующей функции и определения ее коэффициентов одним из указанных выше методов.

Типы аппроксимации характеристик нелинейных элементов В-53

Степенная (полиномиальная ) аппроксимация. Такое название получила аппроксимация ВАХ степенными полиномами

. (4)

Иногда бывает удобно решать задачу аппроксимации заданной характеристики в окрестности точки , называемой рабочей. Тогда используют степенной полином.

. (5)

Определить коэффициенты полинома (4) можно различными способами. При среднеквадратичном приближении они находятся из условия , где определяется формулой (2).

Применение метода интерполяции (метода выбранных точек), когда добиваются совпадения и в выбранных точках , приводит к линейной системе уравнений

,, (7)

Из которой и находятся коэффициенты . В этом методе число выбранных точек (узлов интерполяции) должно совпадать с числом коэффициентов.

Существуют также способы определения коэффициентов степенного полинома путем минимизации Чебышевской погрешности (1), использования разложения в ряд Тейлора и др. Степенная аппроксимация широко используется при анализе работы нелинейных устройств, на которые подаются относительно малые внешние воздействия, поэтому требуется достаточно точное воздействие нелинейности характеристики в окрестности рабочей точки.

Пример. На рисунке 4 кружочками показана полученная экспериментально характеристика , т.е. зависимость тока базы от напряжения между базой и эмиттером для транзистора КТ301. Осуществим постепенную аппроксимацию этой характеристики в диапазоне от 0,4 до 0,9 В полиномом второй степени в окрестности рабочей точки .

Коэффициенты , , и полинома найдем, используя метод интерполяции. Выберем в качестве узлов интерполяции точки, соответствующие напряжениям , и составим систему уравнений (7):

Решение этой системы дает , , . Кривая тока проходит через три экспериментальные точки, соответствующие узлам интерполяции (рисунок 4 кривая 1). Из рисунка видно, что некоторые экспериментальные точки (например, при ) плохо «ложатся» на эту кривую. Кроме того, нас не устраивает изгиб в нижней части характеристики.

Более лучшей аппроксимации можно добиться, если использовать полином четвертой степени и выбрать соответственно пять узлов интерполяции (0,4; 0,5; 0,6; 0,7; 0,8; 0,9 В). В этом случае кривая тока пройдет через все пять экспериментальных точек.

Однако можно попытаться сохранить вторую степень полинома и улучшить аппроксимацию, воспользовавшись каким-либо другим методом для определения коэффициентов , , и . Попробуем найти эти коэффициенты, используя среднеквадратическое приближение тока ко всем пяти экспериментальным значениям. Составим уравнения (6):

Решение этой системы уравнений , и ..

График тока показана на рисунке (кривая 2). Эта характеристика является, по-видимому, более приемлемой для аналитического описания экспериментальных результатов.

Рисунок 4 − Зависимость для транзистора КТ301

Кусочно-линейная аппроксимация. В тех случаях, когда на нелинейный элемент воздействуют напряжения с большими амплитудами, можно допустить более приближенную замену характеристики нелинейного элемента и использовать более простые аппроксимирующие функции. Наиболее часто при анализе работы нелинейного элемента в таком режиме реальная характеристика заменяется отрезками прямых линий с различными наклонами.

С математической точки зрения это означает, что на каждом заполняемом участке характеристики используются степенные полиномы (4) первой степени () с различными значениями коэффициентов и .