Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lec_med_chem_new.doc
Скачиваний:
30
Добавлен:
25.12.2018
Размер:
6.57 Mб
Скачать
  1. Основные понятия

Основные понятия, используемые в медицинской химии — это мишень и лекарство. Мишень — это макромолекулярная биологическая структура, предположительно связанная с определенной функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определенное воздействие. Наиболее часто встречающиеся мишени — это рецепторы и ферменты. Лекарство — это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью.

Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. В отсутствие лиганда рецептор характеризуется собственным уровнем клеточного ответа — так называемой базальной активностью.

По типу модификации клеточного ответа лиганды делят на три группы (см. рис. 3):

Рис. 3 Три типа влияния лигандов на клеточный ответ: увеличение ответа (положительный агонгист), постоянство ответа, но конкурирование за связывании с другими лигандами (нейтральный агонист) и уменьшение ответа (антагонист).

Агонисты увеличивают клеточный ответ;

Нейтральные агонисты связываются с рецептором, но не изменяют клеточный ответ по сравнению с базальным уровнем;

Обратные агонисты, или антагонисты понижают клеточный ответ.

Степень взаимодействия лиганда с мишенью измеряют аффинностью, или сродством. Аффинность равна концентрации лиганда, при которой половина мишеней связана с лигандом. Биологической же характеристикой лиганда является его активность, то есть та концентрация лиганда, при которой клеточный ответ равен половине максимального.

        1. Определение и валидация мишени

Один из самых ранних и самых важных этапов разработки лекарства— выбрать правильную мишень, воздействуя на которую можно специфическим образом регулировать одни биохимические процессы, по возможности не затрагивая при этом другие. Однако, как уже было сказано, такое не всегда возможно: далеко не все заболевания являются следствием дисфункции только одного белка или гена.

С наступлением постгеномной эры, определение мишеней происходит с использованием методов сравнительной и функциональной геномики. На основании филогенетического анализа в геноме человека выявляются гены, родственные генам, функции чьих белковых продуктов уже известны, и эти гены могут быть клонированы для дальнейшего исследования.

Однако мишени, чьи функции определены лишь гипотетически, не могут служить отправной точкой для дальнейших исследований. Необходима многоступенчатая экспериментальная валидация, в результате которой может быть понята конкретная биологическая функция мишени применительно к фенотипическим проявлениям исследуемой болезни.

Существует несколько методов экспериментальной валидации мишеней:

  • Геномные методы заключаются в подавлении синтеза мишени в тестовой системе путем получения мутантов с генным нокаутом (в которых ген мишени попросту отсутствует) или использования РНК-антисмысловых последовательностей, «выключающих» тот или иной ген;

  • Мишени можно инактивировать с помощью моноклональных антител или облучая мишень, модифицированную хромофором, лазерным излучением;

  • Мишени можно инактивировать с помощью низкомолекулярных лигандов-ингибиторов;

  • Также можно непосредственно производить валидацию мишени, устанавливая ее взаимодействие с тем или иным соединением методом плазмонного резонанса.

Уровень валидации мишени повышается с числом модельных животных (специальных генетических линий лабораторных животных), в которых модификация мишени приводит к желаемому фенотипическому проявлению. Высшим уровнем валидации является, несомненно, демонстрация того, что модификация мишени (например, блокирование рецептора или ингибирование фермента) приводит к клинически идентифицируемым и воспроизводимым симптомам у человека, однако, понятно, такое можно наблюдать достаточно редко.

Кроме того, при выборе мишени не следует забывать о таком явлении, как полиморфизм — то есть о том, что ген может существовать в разных изоформах у разных популяций или рас людей, что приведет к разному эффекту лекарства на разных больных.

Когда мишень уже найдена и проверена на валидность, начинаются непосредственные исследования, результатом которых являются многочисленные структуры химических соединений, лишь немногим из которых суждено стать лекарствами.

Исследование всех возможных с химической точки зрения лигандов («химическое пространство») невозможно: простая прикидка показывает, что возможно не менее 1040 различных веществ, в то время как с момента возникновения вселенной прошло лишь ~1017 секунд. Поэтому на возможную структуру лигандов накладывается ряд ограничений, который существенно сужает химическое пространство (оставляя его, тем не менее, совершенно необъятным). В частности, для сужения химического пространства накладываются условия подобия лекарству (drug-likeness), которые в простом случае можно выразить правилом пяти Липинского, согласно которому соединение, чтобы «быть похожим» на лекарство, должно:

  • Иметь менее пяти атомов-доноров водородной связи;

  • Обладать молекулярным весом менее 500;

  • Иметь липофильность (log P — коэффициент распределения вещества на границе раздела вода-октанол) менее 5;

  • Иметь суммарно не более 10 атомов азота и кислорода (грубая оценка количества акцепторов водородной связи).

  • Иметь число нетерминальных свободновращающихся связей не больше 10

В последнее время требования к стартовому набору веществ еще ужесточились и описываются концепцией «сходство с лидерами» (lead-likeness) согласно которой соединение, чтобы «быть похожим» на соединение-лидер, должно иметь:

  • Молекулярная масса – не более 460;

  • Коэффициент распределения в системе 1-октанол/вода (log P) – не более 5;

  • Логарифм растворимости в воде при рН 7,4 – не менее –5;

  • Количество ароматических колец – не более 4;

  • Количество нетерминальных свободновращающихся связей – не более 10;

  • Количество доноров водородной связи – не более 5;

  • Количество акцепторов водородной связи – не более 10;

  • Доля вещества, проникающего из желудочно-кишечного тракта в кровоток посредством пассивной диффузии и без учета метаболитической деградации – не менее 75%;

  • Отношение поляризованной площади поверхности молекулы к общей площади поверхности молекулы – 0,3-0,5.

В качестве стартового набора лигандов, исследуемых на способность связываться с мишенью, обычно используют так называемые библиотеки соединений, либо поставляемые на коммерческой основе специализирующимися на этом компаниями, либо содержащиеся в арсенале фармацевтической компании, проводящей разработку нового лекарства или заказавшей его у сторонней фирмы. Такие библиотеки содержат тысячи и миллионы соединений. Этого, конечно, совершенно недостаточно для тестирования всех возможных вариантов, но этого, как правило, и не требуется. Задачей на этом этапе исследования является выявление соединений, способных после дальнейшей модификации, оптимизации и тестирования дать «кандидат» — соединение, предназначенное для тестирования на животных (доклинические исследования) и на людях (клинические исследования).

Этот этап осуществляется с помощью высокопроизводительного скрининга (in vitro) или его компьютерного (in silico) аналога — высокопроизводительного докинга.

Комбинаторная химия и высокопроизводительный скрининг

Скринингом называется оптимизированная конвейеризованная процедура, в результате которой большое количество химических соединений (> 10000) проверяется на аффинность или активность по отношению к специальной тестовой (имитирующей биологическую) системе. По производительности различают разные виды скрининга:

  • Низкопроизводительный (10000 ÷ 50000 образцов);

  • Среднепроизводительный (50000 ÷ 100000 образцов) и

  • Высокопроизводительный (100000 ÷ 5000000+ образцов).

Для скрининга как для «промышленной» процедуры очень критична эффективность, стоимость и время, потраченное на операцию. Как правило, скрининг производится на роботизированных установках, способных работать в круглосуточном и круглогодичном режиме (см. рис. 4).

Рис. 4 Аппаратура, используемая для высокопроизводительного скрининга. А. Роботизированная пипетка, в автоматическом высокопроизводительном режиме наносящая образцы тестируемых соединений в плашку с системой для скрининга. Типичное количество углублений на плашке — тысячи. Объем системы в одной лунке — микролитры. Объем вносимого образца — нанолитры. Б. Установка для высокопроизводительного скрининга и считывания флуоресцентного сигнала Mark II Scarina. Работает с плашками, содержащими 2048 углублений (NanoCarrier). Полностью автоматическая (работает в круглосуточном режиме). Производительность — более 100000 лунок (образцов) в день.

Принцип скрининга достаточно прост: в плашки, содержащие тестовую систему (например, иммобилизованная мишень или специальным образом модифицированные целые клетки), робот раскапывает из пипетки исследуемые вещества (или смесь веществ), следуя заданной программе. Причем на одной плашке могут находиться тысячи «лунок» с тестовой системой, и объем такой лунки может быть очень мал, так же как и объем вносимой пробы (микро- или даже нанолитры).

Потом происходит считывание данных с плашки, говорящее о том, в какой лунке обнаружена биологическая активность, а в какой — нет. В зависимости от используемой технологии детектор может считывать радиоактивный сигнал, флюоресценцию (если система построена с использованием флуоресцентных белков), биолюминесценцию (если используется люциферин-люциферазная система или ее аналоги), поляризацию излучения и многие другие параметры.

Обычно в результате скрининга количество тестируемых соединений сокращается на 3-4 порядка. Соединения, для которых в процессе скрининга выявлена активность выше заданного значения, называются прототипами. Однако следует понимать, что такие «удачи» еще очень и очень далеки от конечного лекарства. Лишь те из них, которые сохраняют свою активность в модельных системах и удовлетворяют целому ряду критериев, дают предшественников лекарств, которые используются для дальнейших исследований.

Как уже было сказано, даже библиотеки, содержащие более миллиона соединений, не в состоянии представить все возможное химическое пространство лигандов. Поэтому при проведении скрининга можно выбрать две различные стратегии: диверсификационный скрининг и сфокусированный скрининг [3]. Различие между ними заключается в составе используемых библиотек соединений: в диверсификационном варианте используют как можно более непохожие друг на друга лиганды с целью охватить как можно большую область химического пространства, при сфокусированном же, наоборот, используют библиотеки родственных соединений, полученных методами комбинаторной химии, что позволяет, зная приблизительную структуру лиганда, выбрать более оптимальный его вариант. Здравый смысл подсказывает, что в масштабном проекте по созданию нового лекарственного препарата следует использовать оба этих подхода последовательно — сначала диверсификационный, с целью определения максимально различных классов удачных соединений, а потом — сфокусированный, с целью оптимизации структуры этих соединений и получения рабочих прототипов.

Отдельно надо сказать о библиотеках соединений. Понятно, что такое большое количество различных соединений – миллионы штук – можно синтезировать только с помощью высокопроизводительных методов комбинаторной химии. Комбинаторные библиотеки представляют собой серии большого числа соединений, полученных однотипным методом с использованием аналогичных реагентов. Такой метод при использовании специального оборудования позволяет одновременно проводить десятки и даже сотни параллельных синтезов. Так, например, взаимодействие ряда замещенных бензойных кислот с рядом замещенных анилинов позволяет синтезировать комбинаторную библиотеку замещенных бензанилидов, число членов которой равно произведению числа исходных реагентов (схема 1).

Схема 1

Варьируя субстрат и реагент, исследователи добиваются получения широкой гаммы соединений с различными структурными параметрами.

Если для мишени известно так называемое биологическое пространство, то есть какие-либо характеристики лигандов (размер, гидрофобность и т.д.), которые могут с ней связываться, то при составлении библиотеки тестируемых соединений выбирают лиганды, попадающие в «пересечение» биологического и химического пространств, так как это заведомо повышает эффективность процедуры.

Структуры прототипов, полученные в результате скрининга, далее подвергаются разнообразным оптимизациям, проводимым в современных исследованиях, как правило, в тесном сотрудничестве между различными группами исследователей: молекулярными биологами, фармакологами, моделистами и медицинскими химиками (см. рис. 5).

Рис. 5 Фармакологический цикл. Группа молекулярной биологии отвечает за получение мутантных мишеней, группа фармакологии — за измерение данных по активности и аффинности синтезированных лигандов на мишенях дикого типа и мутантных, группа моделирования — за построение моделей мишеней, предсказание их мутаций и предсказание структур лигандов, группа медицинской химии — за синтез лигандов.

С каждым оборотом такого «фармакологического цикла» прототип приближается к предшественнику и затем к кандидату, который уже тестируется непосредственно на животных (доклинические испытания) и на людях — в процессе клинических испытаний.

Таким образом, роль скрининга заключается в существенном сокращении (на несколько порядков) выборки прототипов (см. рис. 6).

Рис. 6 Роль высокопроизводительного скрининга в разработке нового лекарственного препарата. Скрининг, будь то его лабораторный (in vitro) или компьютерный (in silico) вариант, — главная и наиболее ресурсоемкая процедура по выбору стартовых структур лекарств (прототипов) из библиотек доступных соединений. Выходные данные скрининга часто являются отправной точкой для дальнейшего процесса разработки лекарства.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]