Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по Разработке САПР все.doc
Скачиваний:
9
Добавлен:
18.04.2019
Размер:
203.26 Кб
Скачать

40. Структурированный синтез систем. Основные понятия.

Понятие «синтез» технического объекта близко по содержание к понятию «проектирование». Задача синтеза тех.объекта состоит в том, чтобы по заданному фун-ному назначению объекта или закону его фун-ния получить проектное решение в виде некот. описания проектируемого объекта.

Синтез тех.объекта нацелен на создание нов. вариантов.

Анализ использования для оценки этих вариантов. При синтезе заранее должен быть задан:

  1. допустимый набор используемых эл-тов (набор балок или балочных конструкций при проектировании строительных сооружений)

  2. возможные правила их соединения между собой

  3. способы определения ф-ции по синтезированной структуре объекта.

Под стр-рой объекта понимается набор составляющих его эл-тов и связи между ними.

Структура определяется как устроенный объект проектирования, из каких физ частей он состоит и как эти части связаны др. с др.

Под конструкцией понимают материализованную сов-ть соединенных между собой эл-тов, выполняющих заданные ф-ции.

На стр-ру и конструкцию любого проектируемого объекта всегда накладываются ограничения:

  1. относится к методу решения задачи (наличие знаний, сроки выполнения, имеющиеся ср-ва проектирования)

  2. требования ТЗ на пар-ры проектируемого объекта, требования стандартов, технологий изготовления узлов

  3. формируется физ принципами реализации закона функционирования объекта и получаемых характеристик.

Доп ограничения связаны со способами и формами взаимодействия объекта с внешней средой.

Для решения задачи синтеза необходимо выбрать критерий оптимальности проектируемого объекта, т.е. составить ц.ф.

В качестве критерия оптимальности может быть принята его стоимость, КПД, потребляемая мощность и т.д.

При проектировании важно определить оптимальные варианты структур и конструкций машин и устройств, пар-ров схем, режимов работы тех оборудования.

Под оптимальным вариантом понимается такой вариант стр-ры и конструкции, пар-ры кот удовлетворяют всем: системным, конструкторским, технологическим, электрическим, экономическим требованиям ТЗ, а критерий оптимальности принимает максимальное/минимальное значение.

При оптимальном проектировании необходимо обосновать критерий оптимальности и определить мн-во показателей тета=(v1,..vn), на кот наложено мн-во ограничений V=(V1,V2..Vn)

Для решения задачи синтеза тех объекта выделяют сов-ть независимых переменных Х=(х1,х2,..хm), фиксация значений кот определяет один из вариантов объекта. Переменные Х=(х1,х2,..хm) наз переменными проектирования и в зависимости от объекта могут характеризовать кол-во узлов, представлять геометрические размеры изделия.

Критерий оптимальности F(x)=F(x1,x2, .. xm) и показатели тетаi(x)=тета (х1,х2,..хn), на значения кот наложены ограничения, явл ф-циями независимых переменных (х1,х2,… xm)

В формализованном виде задача синтеза тех объектов заключается в определении значений независимых переменных (х1,х2,… xm), при кот критерий оптимальности проектируемого объекта F(x)=F(x1,x2, .. xm) принимает экстремальное значение при условиях тетаi(x)=тета (х1,х2,..хn)>=0, aj<=xj<=bj.

Если ограничения имеют вид тетаi(x)=тета (х1,х2,..хn)>=0, то путем умножения на (-1) приведем к выр-нию тетаi(x)=тета (х1,х2,..хn)<=0. Эти ограничения могут быть заданы в виде ур-ний. Если в виде нер-в, то их можно привести к ур-ниям путем введения доп переменных xm+1-> тета (х1,х2,..хm,xm+1)=0

На ряд переменных может быть наложено условие целочисленности хр- целое число, р=1,q, q<=m. Кол-во ограничений n не может быть больше кол-ва переменных m (n<=m)

Разность (m-n) определяет число степеней свободы в данной задаче.

Только (m-n) переменных берутся произвольно, остальные определяются из степени ограничений.

Если m=n, задача становится алгебраической. Оптимизации ц.ф. при этом не требуется.

Задачи в виде указанных ур-ний представляют собой задачи мат программирования. Если ц.ф. и все ограничения линейны, то задача оптимизации наз задачей линейного программирования. В противном случае- задачей нелинейного программирования . В общем случае нелинейная ц.ф. может иметь несколько локальных экстремумов в допустимой обл, включая ее границу.

Разработано большое кол-во методов и эвристическим алгоритмов решения конкретных задач нелинейного программирования.

При проектировании тех объектов с использованием моделей и методов мат программирования оказывается удобной геометрич иллюстрация процесса получения оптимального решения.

Задачу структурного синтеза трудно формализовать из-за наличия большого кол-ва факторов, влияющих на св-ва и пар-ры объекта, а также из-за сложности решения задач оптимизации большой размерности.

Методы для упрощения решения задач большой размерности:

  1. БИП, при кот процесс проектирования разбивается на взаимосвязанные иерархические уровни, синтезируется не вся сложная система, а отдельные блоки с соответ. уровнем детализации

  2. проектирование на разных стадиях проектирования позволяет использовать разные процедуры структурного анализа, что упрощает задачу.

    • Выбор основных принципов функционирования

    • Выбор тех. решения в рамках принципов функционирования

    • Выпуск тех. док-ции (рабочей)

В зависимости от возможной формализации различают такие виды задач:

  1. полный перебор известных решений

  2. задачи, кот невозможно решить перебором за приемлемое время

  3. решение кот явл проблематичным

В общем случае- перебор вариантов, его сокращение явл актуальной задачей.

БИП уменьшает кол-во вариантов на каждом уровне и делает решение задачи реальным.

Матеем модели синтезируемых объектов чаще всего оказываются чувствительными к начальным условиям, к размерности задачи оптимизации, к виду ц.ф. и ограничений