Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по НГ 1.doc
Скачиваний:
5
Добавлен:
20.04.2019
Размер:
1.65 Mб
Скачать

2. Линейчатые поверхности:

Линейчатая поверхность в общем случае однозначно определяется тремя направляющими линиями, т.е. при перемещении по ним образующей.

Линейчатые поверхности делятся на развёртывающиеся и неразвёртывающиеся.

К развёртывающимся относятся: цилиндрические поверхности, конические поверхности, поверхности с ребром возврата (торса), призматические поверхности, пирамидальные поверхности.

2.1 Циллиндрическая поверхность.

Цилиндрическая поверхность образуется перемещением прямолинейной образующей l по криволинейной направляющей m, причём образующая l остаётся постоянно параллельной заданной направляющей S.

Рис.1

Рис.2

Если точка лежит на поверхности, то она лежит на её образующей.

В частном случае, когда направляющая ломаная, получается призматическая поверхность.

2.2 Коническая поверхность.

Коническая поверхность получается при движении прямолинейной образующей l по криволинейной направляющей m, причём образующая l постоянно проходит через неподвижную точку S.

Рис.3

Рис.4

В частном случае, когда направляющая ломаная, получается пирамидальная поверхность.

2.3 Цилиндроид, коноид, косая плоскость.

Неразвёртывающиеся линейчатые поверхности - это поверхности с плоскостью параллелизма.

Цилиндроид - образуется движением по двум криволинейным направляющим m и n прямолинейной образующей l, остающейся всё время параллельной плоскости параллелизма.

Рис.5

Коноид - отличается от цилиндроида тем, что одна из направляющих - прямая.

Косая плоскость - отличается от цилиндроида тем, что обе направляющие - прямые. Они скрещиваются и параллельны некоторой плоскости (плоскости параллелизма).

3. Поверхности вращения:

Поверхностью вращения общего вида называется поверхность, которая образуется произвольной кривой (плоской или пространственной) при её вращении вокруг неподвижной оси.

В частном случае, при вращении прямой a вокруг оси m, если прямая a пересекает ось m в несобственной точке, получается цилиндрическая поверхность, а если в собственной точке - коническая поверхность.

Каждая точка образующей описывает окружность, называемую параллелью. Наибольшая и наименьшая параллели называются соответственно экватором и горлом.

Плоскости, проходящие через ось вращения, называются меридиональными, они пересекают поверхность вращения по линиям, называемым меридианами.

Меридиональная плоскость, параллельная плоскости V, называется главной меридиональной плоскостью, а линии, по которым эта плоскость пересекает поверхность вращения, называются главными меридианами.

В технике широкое распространение получили поверхности вращения второго порядка - цилиндр, конус, сфера.

3.1 Однополостный гиперболоид.

Однополостный гиперболоид вращения образуется при вращении гиперболы вокруг мнимой оси.

Эта поверхность может быть также получена вращением прямолинейной образующей l вокруг оси k, причём l скрещивается с k (l i).

Рис.6

3.2 Двухполостный гиперболоид.

Двухполостный гиперболоид вращения получается вращением гиперболы вокруг действительной оси.

Рис.7

3.3 Тор.

Тор получается при вращении окружности m вокруг оси k, лежащей в плоскости окружности, но не (пересекающей окружность) проходящей через её центр O.

Тор это поверхность 4-го порядка.

Рис.8

Рис.9

4. Винтовые поверхности.

Винтовые поверхности образуются при движении произвольной образующей по винтовой направляющей. Если образующая - прямая линия, то образованные поверхности называются геликоидами.

VI ПОВЕРХНОСТИ

Пересечение поверхностей плоскостью. Развёртка поверхностей.

При пересечении поверхности плоскостью получается плоская фигура, которую называют сечением. Сечение поверхности плоскостью - плоская кривая, принадлежащая секущей плоскости.

При сечении многогранника плоскостью это ломаная линия, при сечении кривой поверхности - кривая линия.

Развёрткой поверхности тела называется фигура, полученная путём совмещения боковой поверхности с плоскостью.