Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика1.docx
Скачиваний:
31
Добавлен:
21.04.2019
Размер:
1.65 Mб
Скачать

43. Магнитный поток. Теорема Гаусса для магнитного поля в интегральной и дифференциальной формах.

Магни́тный пото́к — поток Фв как интеграл вектора магнитной индукции В через конечную поверхность S. Определяется через интеграл по поверхности при этом векторный элемент площади поверхности определяется как где n — единичный вектор, нормальный к поверхности. Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади: где α — угол между вектором магнитной индукции и нормалью к плоскости площади. Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

Теорема Гаусса: Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю: или в дифференциальной форме Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является (полностью) вихревым.

44. Сила Ампера. Взаимодействие параллельных проводников с током.

Зако́н Ампе́ра — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила dF , с которой магнитное поле действует на элемент объёма dV проводника с током плотности j , находящегося в магнитном поле с индукцией B: . Если ток течёт по тонкому проводнику, то где dl - «элемент длины» проводника — вектор, по модулю равный dl и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Сила dF, с которой магнитное поле действует на элемент dl проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины dl проводника на магнитную индукцию B : Направление силы dF определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила правой руки. Модуль силы Ампера можно найти по формуле: где α — угол между векторами магнитной индукции и тока. Сила dF максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции => .

Наиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1 и I2. Требуется найти силу, действующую на единицу длины проводника. Бесконечный проводник с током I1 в точке на расстоянии r создаёт магнитное поле с индукцией: (по закону Био — Савара — Лапласа). Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй: . По правилу буравчика, направлена в сторону первого проводника (аналогично и для , а значит, проводники притягиваются). Модуль данной силы (r — расстояние между проводниками): Интегрируем, учитывая только проводник единичной длины (пределы l от 0 до 1):