Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение в анализ.docx
Скачиваний:
5
Добавлен:
25.04.2019
Размер:
494.66 Кб
Скачать

Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициэнт можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

9. Определение 2.11   Первым замечательным пределом называется предел

    

        Теорема 2.14   Первый замечательный предел равен

        Доказательство.     Рассмотрим два односторонних предела и и докажем, что каждый из них равен 1. Тогда по теореме 2.1 двусторонний предел также будет равняться 1.

Итак, пусть (этот интервал -- одно из окончаний базы ). В тригонометрическом круге (радиуса ) с центром построим центральный угол, равный , и проведём вертикальную касательную в точке пересечения горизонтальной оси с окружностью ( ). Обозначим точку пересечения луча с углом наклона с окружностью буквой , а с вертикальной касательной -- буквой ; через обозначим проекцию точки на горизонтальную ось.

Рис.2.27.Тригонометрический круг

Пусть  -- площадь треугольника ,  -- площадь кругового сектора , а  -- площадь треугольника . Тогда очевидно следующее неравенство:

Заметим, что горизонтальная координата точки равна , а вертикальная -- (это высота треугольника ), так что . Площадь центрального сектора круга радиуса с центральным углом равна , так что . Из треугольника находим, что . Поэтому Неравенство, связывающее площади трёх фигур, можно теперь записать в виде

Все три части этого неравенства положительны, поэтому его можно записать так:

или (умножив на ) так:

Предел постоянной 1 в правой части неравенства, очевидно, равен 1. Если мы покажем, что при предел в левой части неравенства тоже равен 1, то по теореме "о двух милиционерах" предел средней части также будет равен 1.

Итак, осталось доказать, что . Сперва заметим, что , так как равняется длине дуги окружности , которая, очевидно, длиннее хорды . Применяя теорему "о двух милиционерах" к неравенству

при , получаем, что

(2.3)

Простая замена переменной показывает, что и . Теперь заметим, что . Применяя теоремы о линейности предела и о пределе произведения, получаем:

(2.4)

Тем самым показано, что

Сделаем теперь замену ; при этом база перейдёт в базу (что означает, что если , то ). Значит,

но (  -- нечётная функция), и поэтому

Мы показали, что левосторонний предел также равен 1, что и завершает доказательство теоремы.     

Доказанная теорема означает, что график функции выглядит так:

Рис.2.28.График

Приведём примеры применения первого замечательного предела для вычисления других родственных пределов.

10. Определение 2.12   Вторым замечательным пределом называется предел

    

Число , заданное этим пределом, играет очень большую роль как в математическом анализе, так и в других разделах математики. Число часто называют основанием натуральных логарифмов.

 Теорема 2.15   Второй замечательный предел существует. Его значение  -- число, лежащее между и .    

Более подробное изучение числа показывает, что  -- иррациональное число, несколько первых десятичных знаков которого таковы:

    Доказательство.     Доказывать утверждение леммы будем по индукции по параметру . При формула 2.2, очевидно, верна:

(Заметим, что при и формула 2.2 также хорошо известна:

и

Предположим, что она верна для , и докажем, что тогда она верна и при . Действительно,

При этом в квадратных скобках получается:

   

   

   

и так далее, то есть как раз то, что должно получиться в качестве коэффициентов формулы бинома Ньютона при .     

11. Бесконечно малые функции

Сравнение бесконечно малых функций.

Пусть и — две функции, бесконечно малые в точке . Если , то говорят, что более высокого порядка малости, чем и обозначают . Если же , то более высокого порядка малости, чем ; обозначают . Бесконечно малые функции и называются бесконечно малыми одного порядка малости, если , обозначают .  И, наконец, если  не существует, то бесконечно малые функции и несравнимы.  

??????

Б есконечно малой функция может быть только если указать к какому числу стремится аргумент х→α . Тогда говорят, что α — главная часть бесконечно малой функции g.

12.

(Анализировать и сформулировать вывод самому !)пределы отношения бесконечно малых можно упрощать, откидывая бесконечно малые слагаемые большего порядка и заменяя множители в числителе и знаменателе на эквивалентные бесконечно малые. Для того, чтобы этот способ вычисления пределов (точнее, раскрытия неопределённостей вида ) можно было применять к возможно большему числу примеров, мы должны иметь достаточно большой запас известных пар эквивалентных бесконечно малых величин. Для наиболее употребительной базы создадим такой запас в виде таблицы "стандартных" эквивалентных бесконечно малых.

13. Различные определения непрерывности функции в точке

Эквивалентность определений либо следует из эквивалентности определений конечного предела функции, либо может быть установлена.

Пусть . Тогда эквивалентны следующие определения непрерывности функции в точке.

Через пределы: ( – непрерывна в точке )

  .

Определение по Коши (на языке ):

( – непрерывна в точке )

.

Определение через приращения.

Обозначим  – приращение аргумента,  – приращение функции в точке  соответствующее . Тогда

( – непрерывна в точке ) .

Определение по Гейне (через последовательности).

( – непрерывна в точке )

.

Через односторонние пределы:

( – непрерывна в точке )

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]