Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рыбаков. Книга по ПАЗОС новая.doc
Скачиваний:
59
Добавлен:
07.05.2019
Размер:
3.7 Mб
Скачать

Глава 1. Научные основы технологических процессов

1.1. Основные понятия и законы природоохранных технологий

1.1.1. Два вида переноса вещества и энергии

Изучение технологических процессов позволило выявить общее свойство, характерное для всех производств. Этим общим свойством является наличие переноса вещества или энергии на каждой стадии технологического процесса.

Возьмем какой-либо аппарат, в котором осуществляется технологический процесс (рис. 1.1).

Рис. 1.1. Схема материального баланса

В аппарат подаются загрязняющие вещества в количестве МА и МВ и реагенты в количестве МС, а из аппарата выходят очищенные вода, воздух или почва в количестве МD и малоактивные отходы производства МЕ, которые можно впоследствии использовать или же захоронить. Воспользовавшись законом сохранения массы, получим

МА + МВ + МС = МD + МЕ , то есть ΣМвх = Σ Мвых (1.1)

Это уравнение будем называть материальным балансом. Из уравнения (1.1) видно, что в процессе производства происходит перенос массы из одних компонентов, входящих в аппарат, в другие.

Для жидкости, движущейся в потоке, изменяющем свою конфигурацию (рис. 1.2), уравнение материального баланса принимает форму неразрывности потока

w1S1 = w2S2 = w3S3, (1.2)

где w1 w2 w3 – средние скорости движения жидкости в соответствующем сечении; S1 S2 , S3 – площади живого сечения в плоскостях 1-1; 2-2; 3-3.

Живое сечение – это сечение, заполненное жидкостью.

Рис. 1.2. Схема неразрывности потока

Каждый компонент, входящий в аппарат и выходящий из него, вносит или выносит определенное количество энергии. Это теплота материалов, нагретых до определенной температуры (внутренняя энергия, или энтальпия), ЕА, ЕВ, ЕD, EF, а также кинетическая энергия движущихся потоков ЕС. Наконец, это любой вид энергии, сообщаемой потокам в аппарате для осуществления необходимых преобразований Епр, и необратимые потери энергии, которые возникают в результате протекания процессов, например, потери теплоты в окружающую среду Епот и потери на трение при прохождении потоков через аппарат Етр (рис.1.3).

Рис. 1.3. Схема энергетического баланса

Закон сохранения энергии в этом случае выразится следующим уравнением:

ЕА+ ЕВ+ ЕС + Епр = ЕD+ EF + Епот + Етр, то есть ΣЕвх = Σ Евых (1.3)

Уравнение (1.3) получило название энергетического, или теплового баланса аппарата. Наиболее часто технологические процессы сопровождаются переносом тепловой энергии или количества движения.

1.1.2. Движущая сила технологического процесса

Всякий перенос вещества или энергии не совершается сам по себе. Причиной переноса является наличие в системе неравновесия, или градиента. Например, точечный источник теплоты образует вокруг себя температурное поле. Полем будем называть совокупность значений какой-либо величины в каждой точке рассматриваемого пространства. При этом температура в пространстве зависит от положения точки и от времени:

T = f (x, y, z, τ). (1.4)

Рассмотрим этот точечный источник теплоты q в плоском сечении пространства без изменения температуры по времени (рис. 1.4). Легко представить вокруг этого источника некоторые криволинейные поверхности, вдоль которых температура остается постоянной. Пусть на поверхности А поддерживается температура Т = const, а на поверхности В – температура на ΔТ выше: Т+ΔТ=const.

Рис. 1.4. Схема температурного поля

В этом случае возникнет определенное движение, например тепловое из точки с более высокой температурой в точку с меньшей температурой. Таким образом, движущей силой процесса в данном случае является разность температур. Также движущей силой может служить разность концентраций, разность электрических или химических потенциалов.

Скорость изменения температуры от поверхности А к поверхности В можно охарактеризовать отношением ΔТ к отрезку, на котором оно достигнуто (Δn). Если рассмотреть предел этого отношения ΔТ/ Δn, при n0, то получим выражение, называемое градиентом. Градиент – векторная величина, показывающая, что температура увеличивается в направлении к источнику, т.е. навстречу потоку теплоты. Таким образом, градиент какой-то величины в технологическом процессе и есть его движущая сила.

(1.5)