Добавил:
valentine.space@yandex.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экз по коллоидной.docx
Скачиваний:
73
Добавлен:
29.06.2019
Размер:
13.58 Mб
Скачать

Устойчивость дисперсных систем. Потенциальные кривые взаимодействия частиц дисперсной фазы. Потенциальный барьер и его зависимость от толщины диффузного слоя.

Устойчивость дисперсной системы – неизменность во времени ее основных параметров: дисперсности и равновесного распределения дисперсной фазы в дисперсионной среде.

Взаимодействие двух частиц дисперсной фазы характеризуют с помощью потенциальных кривых – зависимостей энергий взаимодействия между частицами от расстояния.

Различают три наиболее характерных вида потенциальных кривых, отвечающих определенным состояниям агрегативной устойчивости дисперсных систем. Кривая 1 соответствует такому состоянию дисперсной системы, при котором на любом расстоянии между частицами энергия притяжения преобладает над энергией отталкивания.

Энергия отталкивания от расстояния U(h)

Кривая 2 указывает на наличие достаточно высокого потенциального барьера и вторичного минимума. В системе, находящейся в таком состоянии, происходит быстрая флокуляция частиц (перед вторичным минимумом отсутствует потенциальный барьер) на расстояниях, соответствующих вторичному минимуму.

Кривая 3 отвечает состоянию системы с высоким потенциальным барьером при отсутствии вторичного минимума или при его глубине, меньшей тепловой энергии (kбT). Вероятность образования агрегатов частиц в таких условиях очень мала, и дисперсные системы обладают большой агрегативной устойчивостью.

Что представляют собой явления тиксотропии и реопексии? Чем обусловлены эти явления и для каких структурированных систем они характерны? Приведите примеры таких структурированных дисперсных систем

Тиксотропия – способность системы изотермически восстанавливать структуру во времени после ее механического разрушения (способность к изотермическому превращению золя в гель).

Тиксотропия проявляется в разжижении при достаточно интенсивном встряхивании или перемешивании гелей, паст, суспензий и др. (краски, смазки)

Реопексия – возникновение и упрочнение структуры в результате механического воздействия. Примером реопексии может являться сбивание сливочного масла.

Коагуляционные структуры образуются за счет сцепления между частицами под действием сил Ван-дер-Ваальса через прослойку дисперсионной среды (второй минимум потенциальной кривой взаимодействия частиц дисперсной фазы по теории ДЛФО). Системы с такой структурой обладают вязкостью и пластичностью, а при внешнем воздействии способны к обратимому разрушению, т.е. могут восстанавливаться во времени.

Билет 29 Ультрамикроскопия. Определение концентрации золей и размеров частиц. Поточный ультрамикроскоп.

Ультрамикроскопия отличается об обычной микроскопии тем, что объект (дисперсная система) освещается сбоку мощным пучком света. Наблюдают рассеянный свет частицами взвешенными в среде с иными показателями преломления. По существу образуется конус Тиндаля для каждой частицы. Главным условием возможности наблюдения в микроскопе частиц является отсутствие распространения падающего света в направлении рассеянных лучей.

Для определения размеров частиц в пробе необходимо знать их общую массу и плотность. При известных массовых С и частичных v концентрациях будет следовать:

Поточный ультрамикроскоп предложен Дерягиным и Власенко. Золь протекает через специальную кювету в направлении оси микроскопа при боковом освещении. Проходя освещенную зону, каждая частица золя дает вспышку, которая регистрируется счетчиком. По различной яркости частиц их можно разделить на фракции и построить кривые распределения.