Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
консп Нефть и нефтепереработка 1.doc
Скачиваний:
3
Добавлен:
09.07.2019
Размер:
207.36 Кб
Скачать

4.2. Физико-химические методы.

К этой группе относится применение различного рода реагентов-деэмульгаторов. Благоприятное влияние некоторых деэмульгаторов на разложение эмульсий настолько эффективно, что многие из них находят широкое применение для деэмульгации и обессоливания нефтей в промышленных условиях.

Такое широкое применение деэмульгаторов обусловливается целым рядом преимуществ их перед другими методами. Одним из основных преимуществ является простота применения деэмульгаторов. Для некоторых, особенно эффективных препаратов все необходимое оборудование установок ограничивается бачком для хранения и дозировки деэмульгатора и насосом для подкачки его в эмульсию.При этом достигается хорошее обезвоживание и обессоливание нефти, даже без применения промывки водой.

Старение нефтяных эмульсий имеет большое практическое значение для подготовки нефти к переработке, так как свежие эмульсии разрушаются значительно легче и при меньших трудозатратах, чем после старения.

Для снижения или прекращения процесса старения эмульсии необходимо как можно быстрее смешать ее с эффективным деэмульгатором. Нефть с небольшим содержанием воды в виде высокодисперсной эмульсии, прошедшей стадию старения, почти невозможно полностью обессолить существующими способами. Та же нефть, подвергнутая на нефтепромысле глубокому обезвоживанию и обессоливанию с применением деэмульгатора до остаточного содержание солей 40-50 мг/л, практически полностью обессоливается на электрообессоливающих установках нефтеперерабатывающих заводах НПЗ.

При способе термохимической деэмульгации факторами, обеспечивающими приемлемые для нефтепромыслов время и качество отстоя эмульсии, являются небольшой подогрев нефти до 30-60 градусов и подачу деэмульгатора. Расход деэмульгатора для подготовки нефти на промыслах и НПЗ колеблется от 20 до 100 г/т в зависимости от состава нефти и устойчивости образующейся эмульсии воды в нефти.

Современные эффективные деэмульгаторы по своей химической природе в большинстве случаев представляют собой полигликолевые эфиры.

Электрические методы

Разложение эмульсий электрическим методами, ввиду сравнительной простоты необходимых для этой цели установок, применимости для большинства эмульсий и достаточной надежности в работе, получило широкое распространение.

Электрический способ разрушения эмульсий применяют на нефте перерабатывающих заводах при обессоливании нефти на ЭЛОУ (электроочистительных установках), а также при очистки нефтепродуктов от водных растворов щелочей и кислот (электрофайнинг).

В обоих случаях используют электрическое поле высокой напряженности. Под действием электрического поля взвешенные частицы воды сливаются в более крупные, которые под действием силы тяжести осаждаются вниз. Отстоявшаяся вода с растворенными в ней солями выводится из нижней части электородегидратора, обезвоженная нефть - из верхней части. Для достижения минимального содержания солей нефть промывают на ЭЛОУ, состоящих из 2-3 последовательно соединенных ступеней электродегидраторов.

Основными технологическим параметрами процесса являются: температура, давление, удельная производительность дегидраторов, расход диэмульгатора, расход промывной воды и степень ее смешения с нефтью, напряженность электрического поля. Важным технологическим фактором является число ступеней обессолевания.

Одним из важнейших параметров процесса обессоливания является температура. Применяемый на ЭЛОУ подогрев нефти позволяет уменьшить ее вязкость, что существенно повышает подвижность капелек воды в нефтяной среде и ускоряет их коалесценцию. Вместе с тем подогрев нефти на ЭЛОУ сопряжен с серьезными недостатками. С повышением температуры сильно увеличивается электропроводность нефти и, соответственно, повышается расход электроэнергии, значительно усложняются условия работы проходных и подвесных изоляторов. Поэтому подогрев разных нефтей на ЭЛОУ проводят в интервале температур 60-1500С, выбирая для каждой нефти оптимальное значение, обеспечивающее минимальные затраты на ее обессоливание.

Очистка нефти

Первый завод по очистке нефти был построен в России в 1745 г., в период правления Елизаветы Петровны, на Ухтинском нефтяном промысле. Уже тогда во многих церквах горели неугасаемые лампады и паникадила. В них наливалось гарное масло, которое было не чем иным, как смесью очищенной нефти с растительным маслом. Купец Набатов был единственным поставщиком очищенной нефти для соборов и монастырей.

В конце XVIII столетия была изобретена лампа. С появлением ламп возрос спрос на керосин для бытовых нужд.

Очистка нефти – удаление из нефтепродуктов нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел.

Химическая очистка производится путем воздействия различных реагентов на удаляемые компоненты очищаемых продуктов.

Физико-химическая очистка производится с помощью растворителей, избирательно удаляющих нежелательные компоненты из очищаемого продукта.

Каталитическая очистка – гидрогенизация в мягких условиях, применяемая для удаления сернистых и азотистых соединений.

Очистка от сераорганических соединений в нефти и нефтепродуктах.

Выделение и квалифицированное использование гетероатомных компонентов – одна из важнейших задач комплексной переработки нефти. Содержание важнейшего из гетероатомов – серы – колеблется в ней от сотых долей до 6-8 %, в некоторых случаях достигает 14% и более.

Свободная сера и H2S обычно присутствует в нефти в очень малых количествах. Основная масса серы представлена в виде меркаптанов (RSH), сульфидов (RSR), дисульфидов (RSSR), циклических сульфидов (СnH2nS). Нефти, добываемые в России, относятся к умерено сернистым. Высокосернистые нефти в значительном количестве добываются в Западной Сибири (1/3 общей добычи).

Дистилляты, получаемые в процессах переработки нефти, отличаются между собой количеством и составом сернистых соединений. В средних фракциях обычно меркаптанов очень мало, а преобладают циклические насыщенные сульфиды, полиалкилзамещенные и циклоалкилзамещенные тиофены, диалкилсульфиды, бензтиофены. В дизельной фракции много би-, три-, политиоцикланов и ароматических сульфидов.

Существующие промышленные методы переработки сернистых нефтей и их фракций в основном связаны с разрушением сераорганических соединений и удалении их из топлив. На нефтеперерабатывающих заводах очистка нефтепродуктов производится на установках гидроочистки, в результате которой образуется сероводород. Если же таких установок нет, то содержание сернистых соединений в дизельном топливе, например, будет намного превышать требования ГОСТа (0,2 .%). За рубежом содержание серы в топливе не должно превышать 0,05 %.

Последствия сжигания серасодержащих нефтепродуктов - это выброс около  108 т SO2 в год в атмосферу, приводящее к «кислотным дождям», росту заболеваемости населения планеты и т.д.

При этом резко ухудшаются эксплуатационные качества топлив и масел, снижается активность антидетонаторов и антиокислительная стабильность топлива, возрастает коррозия аппаратуры, повышается склонность к смолообразованию у крекинг бензинов и прочее.

Между тем органические соединения серы можно использовать в самых различных сферах. Они - прекрасные пенообразователи, высокоэффективные экстрагенты солей металлов. Им присущи высокие пластифицирующие функции в композиционных полимерных материалах.

Сульфоны - весьма ценные ингредиенты в препаратах ветеринарии (грибковые заболевания), высокоэффективные репелленты.

Известен целый ряд методов очистки нефти и нефтепродуктов от соединений серы.