Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
контрольная по метрологии.docx
Скачиваний:
98
Добавлен:
01.04.2014
Размер:
289.48 Кб
Скачать

2.17 Сформулируйте правила суммирования систематических погрешностей.

Каждый параметр может иметь отклонение xi (погрешность) от предписанного значения xi. Поскольку погрешность xi мала по сравнению с величиной xi, суммарная погрешность y функции y можно вычислять по формуле ,

где y/xi - передаточное отношение (коэффициент влияния) параметра xi.

Формула справедлива лишь для систематических погрешностей xi.

Для случайных погрешностей (когда отдельные составляющие не всегда принимают предельные значения) используются теоремы теории вероятностей о дисперсии, то есть

Суммарная погрешность при наличии только случайных составляющих xi погрешностей

,

где m - число попарно корреляционно связанных параметров;

ki и kj - коэффициенты относительного рассеяния, характеризующие степень отличия закона распределения погрешности данного параметра от нормального;

rij - коэффициент корреляции, существующий при наличии корреляционной связи между параметрами xi и xj.

При наличии и систематических и случайных составляющих погрешностей вычисляют доверительные границы суммарной погрешности:

yсум = y  ky ,

где k - масштабный коэффициент интервала распределения, зависящий от закона распределения и принятой доверительной вероятности. Так, при доверительной вероятности Р = 0,95 для закона нормального распределения k = 2, а для закона Максвелла k = 3,6.

Рассчитываем доверительные границы случайной погрешности результата измерения:

t - коэффициент Стьюдента

Определяем доверительные границы неисключенной систематической погрешности результата измерения:

где m − число суммируемых погрешностей;

− граница i-ой неисключенной погрешности;

к − коэффициент, определяемый принятой доверительной вероятностью При доверительной вероятности Рд = 0,99 коэффициент k принимают равным 1,4, если число суммируемых неисключенных систематических погрешностей более четырёх (m >4). Если число суммируемых погрешностей m4, то коэффициент k определяют по графику зависимости (рисунок) k=f(m, l), где m - число суммируемых погрешностей; ; кривая 1 - для m =2; кривая 2 - для m = 3; кривая 3 - для m = 4.

График зависимости k = f(m, l).

При трёх или четырёх составляющих в качестве принимают составляющую, по числовому значению наиболее отличающуюся от других. В качестве следует принять ближайшую к составляющую.

Вычислим алгебраическую сумму систематических погрешностей:

За оценку неисключенной систематической погрешности принимаем то из значений , которое меньше.

Найдем отношение: .

В случае если < 0,8, то неисключенными систематическими погрешностями по сравнению со случайными пренебрегают и принимают, что граница . Если > 8, то пренебрегают случайной погрешностью по сравнению с систематическими и принимают, что граница погрешности результата  = с.

Погрешность, возникающая из-за пренебрежения одной из составляющих погрешности результата измерения при выполнении указанныx неравенств, не превышает 15 %.

Если  лежит в интервале от 0,8 до 8, начит, граница погрешности результата будет [2]:

,

Где – коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей.

– оценка суммарного среднего квадратического отклонения результата измерения.

Коэффициент вычисляют по эмпирической формуле:

Определим доверительные границы суммарной погрешности результата измерения:

Доказывается, что с погрешностью не более 10% значение может быть определено по более простой формуле:

[2,5]