Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зубчатые передачи.docx
Скачиваний:
4
Добавлен:
31.07.2019
Размер:
1.21 Mб
Скачать

Зубчатые передачи

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение — ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее — колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

Зубчатые передачи классифицируются по признакам, приведенным ниже.

  1. По взаимному расположению осей колес: с па­раллельными осями (цилиндрическая передача — рис. 172, I—IV); с пере­секающимися осями (коническая передача — рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача — рис. 172, VII; червячная передача — рис. 172, VIII).

  2. В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 172, I—III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 172, IV) — в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.

  3. По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.

  4. В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.

  5. По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).

  6. По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3... 15 м/с) и быстроходные (v более 15 м/с).

Рис. 172

Рис. 173

Рис. 174

 

Зубчатые передачи.

Зубчатая передача — это механизм или часть механизма в состав которого входят зубчатые колёса. Движение пе-редаётся с помощью зацепления пары зубчатых колёс. Меньшее зубчатое колесо принято называть шестерней, большее – колесом. Параметрам шестерни приписывают индекс 1, параметрам колеса – индекс 2.

 

 

Достоинства и недостатки зубчатых передач

Достоинства зубчатых передач: • Возможность применения в широком диапазоне скоростей, мощностей и передаточных отношений. • Высокая нагрузочная способность и малые габариты. • Большая долговечность и надёжность работы. • Постоянство передаточного отношения. • Высокий КПД (87-98%). • Простота обслуживания. Недостатки зубчатых передач: • Большая жёсткость не позволяющая компенсировать динамические нагрузки. • Высокие требования к точности изготовления и монтажа. • Шум при больших скоростях.

 

Напряжения при растяжении (сжатии) призматических стержней. Расчет на прочность

   Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е.призматических стержней. Начнем с деформации растяжения (сжатия).

   Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор — продольная сила Nz. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие (рис. 2,б).

Рис.1. Расчетная схема

Рис.2. а) Растяжение и б) сжатие

 

   Для того, чтобы сформулировать предпосылки теории растяжения (сжатия) призматического стержня, обратимся к эксперименту. Представим себе стержень, изготовленный из какого-либо податливого материала (например, резины), на боковую поверхность которого нанесена система продольных и поперечных рисок (рис. 3, а). Эта ортогональная система рисок остается таковой и после приложения растягивающей нагрузки (рис. 3, б). Поскольку поперечные риски являются следами поперечных сечений на поверхности стержня и остаются прямыми и перпендикулярными к оси стержня то это свидетельствует о выполнении гипотезы плоских сечений (Бернулли). С учетом гипотезы об отсутствии поперечного взаимодействия продольных волокон приходим к выводу, что деформация растяжения стержня сводится к одноосному растяжению его продольных волокон, и в поперечном сечении стержня возникают лишь нормальные напряжения а (рис. 4), индекс г у которых опускаем. Ортогональность продольных и поперечных рисок свидетельствует также об отсутствии сдвигов, а, следовательно, и связанных с ними касательных напряжений т в поперечных и продольных сечениях стержня.

Рис.3. Модель растянутого стержня

Рис.4. Связь напряжения и усилия

Ременная передача относится к передачам трением с гибкой связью и может применяться для передачи движения между валами, находящимися на значительном расстоянии один от другого. Она состоит (рис.1) из двух шкивов (ведущего, ведомого) и охватывающего их ремня. Ведущий шкив силами трения, возникающими на поверхности контакта шкива с ремнем вследствие его натяжения, приводит ремень в движение. Ремень в свою очередь заставляет вращаться ведомый шкив. Таким образом, мощность передается с ведущего шкива на ведомый.

 

Рис.1. Виды ременных передач: а — открытая передача; б — перекрестная передача; в — по­луперекрестная передача (со скрещивающимися валами); г — угловая передача (с направляю­щим роликом); д  передача с нажимным роликом;

е — передача со ступенчатым шкивом

 

          Для нормальной работы передачи необходимо предварительное натя­жение ремня, обеспечивающее возникновение сил трения на участках кон­такта (ремень—шкив). Оно осуществляется: 1) вследствие упругости ремня — укорочением его при сшивке, передвижением одного вала или с помощью нажимного ролика; 2) под действием силы тяжести качающейся системы мы или силы пружины; 3) автоматически, в результате реактивного момента, возникающего на статоре двигателя; 4) с применением специальных натяжных устройств  (рис.1, д и рис.2). Так как на практике большинство передач работает с переменным режимом нагрузки, то ремни с постоянным предварительным натяжением в период недогрузок оказываются излишне натянутыми, что ведет к резкому снижению долговечности. С этих позиций целесообразнее применять третий способ, при котором натяжение меняется в зависимости от нагрузки и срок службы ремня наибольший. Однако автоматическое натяжение в реверсивных передачах с непараллельными осями валов применить нельзя.

 Область применения. Ремни должны обладать достаточно высокой прочностью при действии переменных нагрузок, иметь высокий коэффициент трения при движении по шкиву и высокую износостойкость. Ременные передачи применяются для привода агрегатов от электродвигателей малой и средней мощности; для привода от маломощных двигателей внутреннего сгорания. Наибольшее распространение в машинострое­нии находят клиноременные передачи (в станках, автотранспортных двига­телях и т. п.). Эти передачи широко используют при малых межосевых расстояниях и вертикальных осях шкивов, а также при передаче вращения не­сколькими шкивами. При необходимости обеспечения ременной передачи постоянного передаточного числа и хорошей тяговой способности реко­мендуется устанавливать зубчатые ремни. При этом не требуется большего начального натяжения ремней; опоры могут быть неподвижными. Плоскоременные передачи применяются как простейшие, с минимальными напряжениями изгиба. Плоские ремни имеют прямоугольное сечение, применяются в машинах, которые должны быть устойчивы к вибрациям (например, высокоточные станки). Плоско­ременные передачи в настоящее время применяют сравнительно редко (они вытесняются клиноременными). Теоретически тяговая способность клинового ремня при том же усилии натяжения в 3 раза больше, чем у плоского. Однако относительная прочность клинового ремня по сравнению с плоским несколько меньше (в нем меньше слоев армирующей ткани), поэтому практически тяговая способность клинового ремня приблизительно в два раза выше, чем у плоского. Это свидетельство в пользу клиновых ремней послужило основанием для их широкого распространения, в особенности в последнее время. Клиновые ремни могут передавать вращение нанесколько валов одновременно, допускают umax = 8 – 10 без натяжного ролика.

Круглоременные передачи (как си­ловые) в машиностроении не применяются. Их используют в основном для маломощных устройств в приборостроении и бытовых механизмах (магни­тофоны, радиолы, швейные машины и т. д.).

Передаваемая мощность силовых ременных передач практически дос­тигает 50 кВт, хотя известны плоскоременные передачи мощностью и 1500 кВт. Скорость ремня 5 - 30 м/с (в сверхскоростных передачах = 100 м/с). В механических приводах ременная передача используется чаще всего как понижающая передача. Максимальное передаточное отношение Umax = 5 – 6 для передач без натяжного ролика и Umax = 6 – 10 для передач с натяжным роликом, допускают кратковременную перегрузку до 200%.

  Достоинства:

возможность расположения ведущего и ведомого шкивов на больших расстояниях (более 15 метров) (что важно, например, для сельскохозяйственного ма­шиностроения);

- плавность хода, бесшумность работы передачи, обусловленные эластичностью ремня;

        - малая чувствительность к толчкам и ударам, а также к перегрузкам, способность пробуксовывать;

- возможность работы с большими угловыми скоростями;

- предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня;

- возможность работы при высоких оборотах;

- простота конструкции и дешевизна.

Недостатки:

- непостоянство   передаточного   числа   вследствие   проскальзывания ремней;

- постепенное вытягивание ремней, их недолговечность;

- необходимость постоянного ухода (установка и натяжение ремней, их перешивка и замена при обрыве и т. п.);

- сравнительно большие габаритные размеры передачи;

- высокие нагрузки на валы и опоры из-за натяжения ремня;

- опасность попадания масла на ремень;

- малая долговечность при больших скоростях (в пределах от 1000 до 5000 ч);

- необходимость натяжного устройства.

 

Классификация

  • По способу передачи механической энергии:

    • трением;

    • зацеплением.

  • По виду ремней:

    • плоские ремни;

    • клиновые ремни;

    • поликлиновые ремни;

    • зубчатые ремни;

    • вариаторные;

    • тяговые;

    • многоручьевые;

    • транспортировочные;

    • протяжные;

    • ремни круглого сечения.