Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Текстовый документ OpenDocument.doc
Скачиваний:
9
Добавлен:
05.08.2019
Размер:
710.14 Кб
Скачать

Вопросы к экзамену по материаловедению:

  1. Азотирование стали. Структура. Термическая обработка

  2. Сплавы для постоянных магнитов

  3. Термопластичные пластмассы на основе фенолформальдегидной смолы

  4. Магнитотвердые ферриты. Технология получения, свойства, маркировка

  5. Магнитотвердые сплавы

  6. Быстрорежущие стали. Состав, термообработка, маркировка

  7. Ползучесть металлов и сплавов. Методы оценки жаропрочных свойств

  8. Жаропрочные стали аустенитного класса. Ползучесть, стадии ползучести

  9. Закон критических скалывающих напряжений (Шмидт-Боас)

  10. Алюминий и его сплавы

  11. Медь и ее сплавы

  12. Влияние наклепа на свойства стали

  13. Влияние примесных элементов и углерода на свойства стали. Дефекты, возникающие при термической обработке

  14. Структура литой и затем деформированной стали. Холодная и горячая деформация

  15. Процессы, протекающие при нагреве холоднодеформированных металлов

  16. Пластическая деформация металлов. Виды деформации, системы скольжения

  17. Закаливаемость и прокаливаемость стали. Факторы, влияющие на прокаливаемость стали

  18. Обрабатываемость стали. Факторы, влияющие на обрабатываемость

  19. Влияние скорости охлаждения и состава на структуру и свойства чугуна

  20. Влияние легирующих элементов на полиморфизм железа и кинетику распада аустенита

  21. Цементация стали

  22. Износостойкие аустенитные стали

  23. Остаточные внутренние напряжения в металлах и сплавах, их влияние на свойства. Упрочнение металлов

  24. Углеродистые стали обычного качества (группы А, Б, В)

  25. Высокопрочный модифицированный чугун (ВЧШГ). Маркировка, свойства, применение

  26. Отжиг I рода

  27. Полиморфные превращения металлов

  28. Нержавеющие хромоникелевые стали

  29. Роль дислокаций при пластической деформации

  30. Возникновение неравновесных структур при кристаллизации из твердого раствора. Гидритная ликвация

  31. Превращение аустенита при непрерывном охлаждении с разными скоростями. Атермическое превращение

  32. Шарикоподшипниковые стали. Структура и термообработка

  33. Мартенситные превращения

  34. Бейнитные превращения

  35. Отжиг II рода

  36. Особенности деформации поликристаллов

  37. Высокотемпературная термомеханическая обработка (ВТМО)

  38. МТМО

  39. Дисперсно-упрочненные жаропрочные материалы. Состав, свойства, обработка

  40. Термопластичные пластмассы на основе фенолформальдегида

  41. Рессорно-пружинные стали

  42. Жаропрочные сплавы на основе алюминия (САП)

  43. Жаропрочные сплавы на никелевой основе. Маркировка, термообработка, применение

  44. Структура образования заэвтектоидной стали

  45. Медь и ее сплавы

  46. Термореактивные пластмассы типа полиэтилена и полистирола

  47. Охлаждение среды при закалке. Преимущества и недостатки

  48. ТВЧ – закалка с использованием тока высокой частоты

  49. Структура образования при охлаждении стали и чугуна

  50. Качественные углеродистые стали

  51. Ковкий чугун

  52. Влияние дефектов в кристаллическом строении на свойства стали

  53. Основные превращения, происходящие при термообработке

  54. Жаропрочные стали перлитного и мартенситного класса

  55. Влияние размера зерна на свойства стали

  56. Ционирование и нитроцементация

  57. Отпуск стали, виды отпуска

  58. Нержавеющие хромистые стали

  59. Классификация и маркировка легированных сталей

1.Азотирование стали.

Азотирование стали — насыщение поверхности стальных деталей азотом для повышения твердости, износо и теплостойкости и коррозионной стойкости. Для азотирования нагревают детали при 480—650°С в атмосфере диссоциированого аммиака, при этом образуется атомарный азот, который поглощается поверхностью стальных деталей с образованием твердого раствора азота в матрице металла , нитридовжелеза и нитридов легирующих элементов.аммиак разлагется по реакции: NH3=3N+N.Азотированию подвергают детали, прошедшие термическую обработку (закалку с высоким отпуском) и обработку резанием. На неазотируемые участки наносят электролитическое покрытие оловом. Внутренние резьбы и отверстия защищают обмазками.Детали укладывают равномерно в герметически закрытый муфель (реторту), который помещают в электропечь. В муфель из баллонов подается аммиак, который при нагревании разлагается, образуя атомарный азот.Процесс азотирования продолжается 3…90 ч, а последующее медленное охлаждение печи с деталями—4…5 ч. Глубина азотированного слоя (0,25…0,65 мм) зависит от температуры и времени выдержки.Различают прочностное азотирование, которое проводят для повышения твердости, износостойкости и усталостной прочности, и противокоррозионное азотирование (декоративное)—для повышения коррозионной стойкости во влажной атмосфере и пресной воде.Противокоррозионному азотированию в основном подвергают углеродистые стали. Процесс протекает при температуре 600…700°С с выдержкой 0,5… 1 ч.Азотирование по сравнению с цементацией имеет следующие преимущества: твердость и износостойкость азотированного слоя значительно выше цементированного закаленного слоя; после азотирования закалки деталей не требуется, что предотвращает их коробление; азотированная поверхность более устойчива к коррозии. Однако азотирование—процесс более длительный и сложный, поэтому его применяют только для легированных сталей. Азотированные детали малопригодны для работы в условиях высоких удельных нагрузок из-за недостаточной толщины азотированного слоя.Распределение азота по глубине слоя имеет скачкообразный характер вследствие отсутсвия переходных двухфазных слоев. Глубина и поверхностная твердость азотированного слоя зависят от ряда факторов, из которых основные: температура азотирования, продолжительность азотирования и состав азотируемой стали.

2.Сплавы для постоянных магнитов.Для производства постоянных магнитов обычно используются следующие материалы:

  • Бариевые и стронциевые магнитотвердые ферриты

Имеют состав Ba/SrO·6 Fe2O3 и характеризуются высокой устойчивостью к размагничиванию в сочетании с хорошей коррозионной стойкостью. Несмотря на низкие по сравнению с другими классами магнитные параметры и высокую хрупкость, благодаря низкой стоимости магнитотвердые ферриты наиболее широко применяются в промышленности.

  • Магниты NdFeB (неодим-железо-бор)

Редкоземельные магниты, изготавливаемые прессованием или литьем из интерметаллида Nd2Fe14B. Преимуществами этого класса магнитов являются высокие магнитные свойства (Br, Hc и (BH)max), а также невысокая стоимость. В связи со слабой коррозионной устойчивостью обычно покрываются медью, никелем или цинком.

  • Редкоземельные магниты SmCo (Самарий-Кобальт)

Изготавливаются методом порошковой металлургии из композиционного сплава SmCo5/Sm2Co17 и характеризуются высокими магнитными свойствами, отличной коррозионной устойчивостью и хорошей стабильностью параметров при температурах до 350 °C, что обеспечивает им преимущества на высоких температурах перед магнитами NdFeB

  • Магниты ALNICO (российское название ЮНДК)

Изготавливаются основе сплава Al-Ni-Co-Fe. К их преимуществам можно отнести высокую температурную стабильность в интервале температур до 550 °C, высокую временну́ю стабильность параметров в сочетании с большой величиной коэрцитивной силы, хорошую коррозионную устойчивость. Важным фактором в пользу их выбора может являться значительно меньшая стоимость по сравнению с магнитами из Sm-Co.

  • Полимерные постоянные магниты (магнитопласты)

Изготавливаются из смеси магнитного порошка и связующей полимерной компоненты (например резины). Достоинством магнитопластов является возможность получения сложных форм изделий с высокой точностью размеров, а также высокая коррозионная устойчивость в сочетании с большой величиной удельного сопротивления и малым весом.

Наиболее широко распространены ферритовые магниты[источник не указан 27 дней].

Для применений при обычных температурах самые сильные постоянные магниты делаются из сплавов, содержащих неодим. Они используются в таких областях, как магнитно-резонансная томография, сервоприводы жёстких дисков и создание высококачественных динамиков, а также ведущей части двигателей авиамоделей.

3.Термопластичные пластмассы.

Изделия из пластмасс получают прессованием, литьем под давлением, штамповкой листовых пластмасс и иными методами. Прессование — более обширно всераспространенный метод получения изделия из термореактивных пластмасс в пресс-формах, предварительно нагретых до 130—150 °С. В качестве основного оборудования для прессования употребляют гидравлические и механические прессы.Пластмассы просто поддаются обработке на металлорежущих станках инвентарем из быстрорежущих сталей либо жестких сплавов. Индивидуальности обработки пластмасс обоснованы их специфичными параметровами и требуют выбора определенных режимов резания. В ряде случаев рабочая поверхность режущего материала в процессе резания обволакивается смолами, что затрудняет отвод стружки и усугубляет качество поверхностиАбразивные материалы. Из абразивных материалов делаются абразивные (шлифующие) инструменты — круги, ленты, шкурки, пасты. Микрорезцы (зерна) этого инструмента представляют собой частички окиси алюминия, карбида кремния, синтетических либо природных алмазов, удерживаемых связками на базе фенолформальдегидных смол либо металлическими—на базе меди, олова, железа, алюминия и др.Зерна владеют высочайшей твердостью, износостойкостью и теплоемкостью. Это дозволяет обрабатывать твердые материалы, в том числе закаленные стали, металло- и минералокерамические твердые сплавы. Абразивные зерна срезают чрезвычайно тонкие стружки с большой скоростью, что дает возможность получить высшую точность, не плохое качество обработки поверхности и пр.В маркировку абразивного инструмента входят обозначения абразивного материала, связки, зернистости, твердости.В крайнее время огромное применение для заточки и доводки твердосплавленных резцов получил инструмент из естественных и синтетических алмазов, имеющий высочайшие твердость, износостойкость, теплопроводимость и маленький коэффициент трения.Пластма́ссы - органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное. В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на термопласты и реактопласты.Различают термопластичные (полиэтилен, полистирол, капрон и др.) и термореактивные (карболиты, феноло-формальдегидные и эпоксидные смолы) пластмассы. Термопластичные пластмассы при нагревании размягчаются, а при охлаждении вновь затвердевают без изменения своей химической структуры. Термореактивные пластмассы при нагревании плавятся, а при охлаждении и затвердевании переходят в необратимое состояние в результате глубоких химических превращений.Термопластичные и термореактивные пластмассы имеют общие особенности в технологии производства и в оценке их пожарной опасности. Чтобы понять эти особенности, остановимся, например, на производстве полиэтилена.Получают полиэтилен полимеризацией газообразного этилена.Полимеризацию этилена в промышленных условиях осуществляют двумя методами: методом высокого давления (до 200 МПа и более) в присутствии инициатора — кислорода и методом низкого давления (до 0,3 МПа) в присутствии металлоорганических катализаторов.Производство полиэтилена методом высокого давления. Для осуществления в промышленных условиях этого метода в реакторе поддерживают давление до 200 МПа (2000 ат) и более, температуру около 200 °С и подают инициатор.

4.Магнитотвёрдые ферритыСпеченные ферритовые магниты устойчивы к воздействию сильных размагничивающих полей, обладают прекрасной коррозионной и химической стойкостью. Магниты устойчивы к воздействию многих химических веществ, например, растворителей, щелочных растворов и разбавленных кислот. При воздействии концентрированных органических и неорганических кислот, например, щавелевой, соляной, серной, стойкость магнитов определяется температурой, концентрацией и длительностью воздействия. Подобную стойкость следует проверять в ходе длительных испытаний. Поскольку магнитотвердые ферриты относятся к керамике, они очень хрупки и склонны к разрушению при ударе или изгибе. Рабочие температуры магнитотвердых ферритов находятся в интервале от – 40 до + 250°С. Изменение температуры оказывает влияние на магнитные свойства изделия. Постоянные магниты, эксплуатируемые при низких температурах, могут терять намагниченность. Одной из важнейших особенностей постоянных магнитов из феррита стронция является большая величина удельного электросопротивления (10*103 Ом*мм), что исключает возможность возникновения в них вихревых токов и позволяет использовать их в цепях, подвергающихся воздействию полей высокой частоты. Наличие полупроводниковых свойств обусловило широкое применение этих магнитов в радиоэлектронике.Постоянные магниты из порошков феррита стронция находят широкое применение в системах с большим магнитным сопротивлением и сильными размагничивающими полями, где предъявляются особые требования к весогабаритным характеристикам и температурной стабильности.Магнитотвердые ферриты сохраняют магнитные параметры:- при пониженном атмосферном давлении до 1,3*10-4Па;- при повышенном давлении воздуха или другого газа до 300 кПа;- при повышенной влажности воздуха до 98% при температуре 35°С или более низких температурах без конденсации влаги.ОАО НПО «Магнетон» предлагает высококачественные спеченные ферритовые постоянные магниты как стандартных форм и размеров, так и изготовленные по уникальным требованиям заказчика. Преимущества: - Низкий удельный вес- Диэлектрические свойства- Высокая коррозийная стойкость- Возможность создания систем с большим немагнитным зазором Область применения:- Автомобильная техника;- Электродвигатели различных типов;- Магнитные сепараторы;- Приборы учета расхода газа и воды;- Бытовая техника;- Электрогенераторы;- Сувенирная продукция;Технологические возможности:- Изготовление анизотропных малогабаритных магнитов сухим прессованием;- Крупносерийное производство сегментных магнитов для электродвигателей;- Получение магнитов с изотропной, аксиальной и радиальной текстурой.- Изготовление магнитов любой конфигурации с массой от долей грамма до килограмма.

5.Магнитотвёрдые сплавы (ЮНДК-24)

Общие сведения. Магнитотвердые стали и сплавы характеризуются высокой коэрцитивной силой (Яс) и остаточной индукцией (Вг) и соответственно высокими значениями максимальной удельной магнитной энергии V2 (ВН)т&х. Согласно ГОСТ 19693—74, магнитотвердый материал —это магнитный материал с коэрцитивной силой по индукции ^4 кА/м.Магнитотвердые материалы в основном используются для изготовления постоянных магнитов, которые являются важнейшими элементами многих устройств почти во всех областях техники (электронике, приборостроении, автоматических устройствах и т. д.). Они используются также для гистерезисных двигателей и магнитной записи. Повышение качества магнитотвердых материалов содействует прогрессу во многих отраслях техники.Металлические материалы для постоянных магнитов по технологии производства классифицируют на: литые, спеченные и деформируемые.Материалы магнитотвердые литые. пользуют порошки сплавов на основе систем Fe — Ni — Al, Си — Ni — Со, Fe — Со — Mo, Со — Pt и др.Химический состав спеченных железоникелеалюминие-вых сплавов незначительно отличается от состава аналогичных литых сплавов. Из-за более низких магнитных свойств (снижению свойств способствует пористость) спеченные сплавы на основе системы Fe — Ni — Al не находят такого широкого применения, как литые. Основная область применения спеченных сплавов на основе системы Fe — Ni — Al — изготовление небольших по габаритам и массе магнитов для измерительных и электронных приборов, автоматических устройств, а также магнитов массой до нескольких килограммов для роторов быстроходных электрических машин.Одной из важнейших задач современной электроники и автоматики является создание оптимальных устройств при их минимальных габаритах и массе. Необходимы новые магнитотвердые материалы с наибольшей коэрцитивной силой и удельной магнитной энергией, позволяющей изготавливать мощные магниты небольших габаритов и массы. Такие материалы разработаны на основе интерметаллических соединений кобальта с редкоземельными металлами (РЗМ): церием, самарием, празеодимом, лантаном, иттрием.В нашей стране стандартизированы материалы магнитотвердые спеченные (ГОСТ 21559—76 *) на основе сплавов кобальта с редкоземельными металлами — самарием и празеодимом, предназначенные для постоянных магнитов. Ввиду того что самарий является дорогим металлом, существенное удешевление магнитов из РЗМ возможно путем замены самария мишметаллом и церием. Это приведет к еще большему использованию в технике магнитов из РЗМ.

6.Быстрорежущие стали

Марка стали Температура отпуска, ºC Время выдержки, часТвердость, HRCэ

У7, У8, У10, У12 150 ÷ 160 1 63

Р9580 4

У7, У8, У10, У12 200 ÷ 220 1 59

Р6М5К5, Р9, Р9М4К8, Р18620 ÷ 630 4

С увеличением скорости резания возрастают требования к теплостойкости стали. Этим требованиям в большей мере удовлетворяют быстрорежущие стали.Быстрорежущие стали маркируют буквой Р (гарМ быстрый, скорый), цифры показывают среднее содержание вольфрама, являющегося основным легирующим элементом. Среднее содержание углерода и хрома во всех быстрорежущих сталях обычно составляет соответственно 1 и 4 %, поэтому эти элементы не указываются. Содержание остальных легирующих в целых процентах указывается как обычно в цифрах, следующих за их буквенным обозначением.Быстрорежущая сталь после закалки и отпуска имеет структуру высоколегированного отпущенного мартенсита с карбидами. Она сохраняет первоначальную структуру практически неизменной при нагреве до 600—620 °С. Резцы из быстрорежущей стали позволяют увеличить скорость резания в 8—10 раз по сравнению с инструментом из углеродистых сталей УЮ—У10А.Химический состав некоторых быстрорежущих сталей приведен в табл. 15 (ГОСТ 19265—73).Известно, что потери твердости при нагреве обусловлена в первую очередь, коагуляцией выделившихся карбидов. Коагуляция карбидов в углеродистой и легированной сталях при температурах более 300 °С ведет к быстрой потере твердости. Теплостойкость быстрорежущих сталей обусловлена легированием их карбидо-образующими элементами вольфрамом, ванадием и молибденом в количествах, достаточных для связывания почти всего углерода в специальные карбиды. Они коагулируют при температурах более 600 °С.Микроструктура быстрорежущей стали приведена на рис. 126. При затвердевании литой быстрорежущей стали образуется эвтектика, напоминающая ледебурит и располагающаяся по границам зерен. После ковки или прокатки сетка эвтектики подвергается дроблению с измельчением входящих в нее карбидов и более равномерным их распределением в основной матрице.После прокатки или ковки быстрорежущую сталь подвергают изотермическому отжигу для уменьшения твердости и облегчения механической обработки. Сталь выдерживают при 740 °С до полного превращения аустенита в перлито-сорбитную структуру.Высокую теплостойкость инструмент из быстрорежущих сталей приобретает после закалки и многократного отпуска. При нагреве под закалку необходимо обеспечить максимальное растворение карбидов и получение высоколегированного аустенита. Такая структура увеличивает прокаливаемость и позволяет получить стали для изготовления режущего инструмента и быстроизнашивающихся деталей технологического оборудования.Особо твердые инструментальные материалы созданы на основе нитрида бора и нитрида кремния. В них нет пластичной металлической связки. Изделия из этих материалов изготавливают либо с помощью взрыва, либо в условиях сверхвысоких статических давлений и высоких температур. Изделия из нитридов бора и кремния используют в качестве материала иденторов (наконечников) для измерения твердости тугоплавких материалов в интервале температур 700—1800 °С, как абразивный материал и в качестве сырья для изготовления сверхтвердых материалов, при­меняемых для оснащения режущей части инструментов для обработки закаленных сталей, твердых сплавов, стеклопластиков, цветных металлов. Они обладают высокой твердостью (НК.А 94—96), прочностью, износостойкостью, теплопроводностью, высокой стабильностью физических свойств и структуры при повышении температуры до 1000 °С. Их преимуществом является доступность и дешевизна исходного продукта, благодаря чему они используются для замены вольфрамсодержащих твердых сплавов.Для изготовления доводочных паст, шлифовальных кругов применяют абразивные материалы. Они представляют собой порошки, либо скрепленные связкой, либо нанесенные на гибкую основу — ткань или бумагу. Различают природные и искусствен­ные абразивные материалы. К природным относятся алмазы, гранаты, корунд; к искусственным — искусственные алмазы, гексагональный нитрид бора (эльбор), карборунд.

7.Ползучесть материалов (последействие) — изменение с течением времени деформации твёрдого тела под воздействием постоянной нагрузки или механического напряжения.Ползучести в той или иной мере подвержены все твёрдые тела — как кристаллические, так и аморфные.

Причины и свойства

Ползучесть материалов экспериментально изучают прежде всего при простых напряженных состояниях: одноосных растяжениисжатии, а также чистом сдвиге. Условия проведения таких экспериментов определены ГОСТами. Ползучесть при сложных напряженных состояниях изучают обычно на тонкостенных трубчатых образцах.

Кривая ползучести

Ползучесть описывается так называемой кривой ползучести, которая представляет собой зависимость деформации от времени при постоянных температуре и приложенной нагрузке (или напряжении).

Её условно делят на три участка, или стадии:

  • АВ — участок неустановившейся (или затухающей) ползучести (стадия I),

  • BC — участок установившейся ползучести — деформации, идущей с постоянной скоростью (стадия II),

  • CD — участок ускоренной ползучести (стадия III),

  • E0 — деформация в момент приложения нагрузки (стадия IV),

  • точка D — момент разрушения.

Стадии ползучести

Как общее время до разрушения, так и протяжённость каждой из стадий зависят от температуры и приложенной нагрузки. При температурах, составляющих 40 %-80 % температурыплавления металла (именно эти температуры представляют наибольший технический интерес), затухание ползучести на первой её стадии является результатом деформационного упрочнения (наклёпа). Так как ползучесть происходит при высокой температуре, то возможно также снятие наклёпа — так называемый возврат свойств материала. Когда скорости наклёпа и возврата становятся одинаковыми, наступает II стадия ползучести. Переход в III стадию связан с накоплением повреждения материала (поры, микротрещины), образование которых начинается уже на I и II стадиях.

Жаропрочность. Высокое сопротивление ползучести является одним из факторов, определяющих жаропрочность. Для сравнительной оценки технических материалов сопротивление ползучестихарактеризуют пределом ползучести — напряжением, при котором за заданное время достигается данная деформация. В авиационном моторостроениипринимают время, равное 100—200 ч, при конструировании стационарных паровых турбин — 100 000 ч. Иногда сопротивление ползучести характеризуют величиной скорости деформации по прошествии заданного времени. Скорость полной деформации складывается из скорости упругой деформации и скорости деформации ползучести.

8.Жаропрочные стали аустенитного класса. Ползучесть. Стадии ползучести. Методы оценкиСтали аустенитногокласса – в основном хромоникелевые стали с содержанием Cr и Ni в пределах от 7 до 25 % каждого, наряду с которыми присутствуют W, Mo, Ti, Nb и др.Это самая многочисленная группа жаропрочных (и жаростойких) сталей В марках этих сталей приняты следующие обозначения для легирующих элементов: А — N, Б — Nb, В — W, Г — Mn, К — Co, М — Mo, Н — Ni, P — B, C — Si, T — Ti, Ф — V, X — Cr, Ю — Al. Цифра после буквы указывает на округленное (среднемарочное) содержание этого элемента в процентах (при содержании менее 1 % цифру не пишут). Исключение — углерод, содержание которого первые две цифры марки выражают в десятых процента. Например, марка 45Х14Н14В2М следующего состава: 0,45 % С, 14 % Cr, 14 % Ni, 2 % W, и ≤ 1 % Мо. В соответствии с особенностями легированного аустенита характеристики жаропрочных свойств аустенитных сталей более высокие (табл. 12.5), чем у жаропрочных сталей перлитного или мартенситного классов.Сталь 08Х18Н10Т применяют как жаропрочную и жаростойкую. При температуре до 600 °С у стали стабильные механические свойства, она устойчива против межкристаллитной коррозии и хорошо сваривается. Сталь этой марки изготовляют в виде сортового проката, поковок, листа, труб для энергетического и химического оборудования. Аналогичные свойства у стали 12Х18Н12Т, которую применяют в тех же областях техники.У хромоникельвольфрамовых аустенитных сталей (45Х14Н14В2М) повышенные жаропрочность и сопротивление усталости при высоких температурах. Сталь 45Х14Н14В2М находит применение для выпускных клапанов двигателей внутреннего сгорания. Для длительных сроков службы при температурах 600–650 °С рекомендуется сталь того же типа с пониженным содержанием С (до 0,15 %).Аустенитные стали применяют, как правило, для изготовления деталей, работающих при температурах 650–700 °С весьма длительное время. Механические свойства этих сталей при температуре 20 °С похожи, но пределы длительной прочности и ползучести отличаются весьма существенно (табл. 12.4, 12.5). Наиболее жаропрочные из них стали 09Х14Н19В2БР1 и 09Х14Н19В2БР, которые применяют для изготовления пароперегревательных и паропроводных труб установок сверхвысокого давления.Хромомарганцевые стали марок 30Х13Г18Ф и 37Х12Н8Г8МФБ — заменители жаропрочных сталей с более высоким содержанием никеля. Эти стали имееют достаточно высокую длительную прочность при температурах 500–650 °С.ПолзучестьЯвление непрерывной деформации под действием постоянного напряжения называется ползучестью. Характеристикой ползучести является предел ползучести, характеризующий условное растягивающее напряжение, при котором скорость и деформация ползучести за определённое время достигают заданной величины. Если допуск даётся по скорости ползучести, то предел ползучести обозначается σ(сигма) с двумя индексами: нижний соответствует заданной скорости ползучести в %/ч (проценты в час), а верхний - температуре испытания. Если задаётся относительное удлинение, то в обозначение предела ползучести вводят три индекса: один верхний соответствует температуре испытания, два нижних — деформации и времени. Для деталей, работающих длительный срок (годы), предел ползучести должен характеризоваться малой деформацией, возникающей при значительной длительности приложения нагрузки. Для паровых турбин, лопаток паровых турбин, работающих под давлением, допускается суммарная деформация не более 1 % за 100000 часов, в отдельных случаях допускается 5 %. У лопаток газовых турбин деформация может быть 1-2 % на 100—500 часов.Стадии ползучестиКак общее время до разрушения, так и протяжённость каждой из стадий зависят от температуры и приложенной нагрузки. При температурах, составляющих 40 %-80 % температуры плавления металла (именно эти температуры представляют наибольший технический интерес), затухание ползучести на первой её стадии является результатом деформационного упрочнения (наклёпа). Так как ползучесть происходит при высокой температуре, то возможно также снятие наклёпа — так называемый возврат свойств материала. Когда скорости наклёпа и возврата становятся одинаковыми, наступает II стадия ползучести. Переход в III стадию связан с накоплением повреждения материала (поры, микротрещины), образование которых начинается уже на I и II стадиях.

9.В монокристаллах аустенитной нержавеющей стали Fe-26%Cr-32%Ni- 3%Mo (wt. %) исследовано влияние водорода на критические скалывающие напряжения taucr, дислокационную структуру, механизмы деформации --- скольжение и двойникование. Впервые показано, что наводороживание приводит к появлению ориентационной зависимости taucr, которая отсутствует в исходных кристаллах без водорода. Ориентационная зависимость taucr связана с понижением величины энергии дефекта упаковки, что в свою очередь определяет смену механизма деформации от скольжения к двойникованию.

10. Алюминий и его сплавыШирокое применение алюминия в промышленности, прежде всего, связано с его большими природными запасами, а также совокупностью химических, физических и механических характеристик. Алюминий по содержанию в земной коре ( ~ 8,8 % ) является одним из самых распространенных металлов (для сравнения, например, железа в земной коре 4,65% - в два раза меньше). К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.Температура плавления алюминия технической чистоты (99,5 % А1) 658°С.С повышением степени чистоты температура плавления алюминия возрастает и для металла высокой чистоты (99,996 % А1) составляет 660,24°С. Удельная теплота плавления алюминия-около 390 Дж/г, удельная теплоемкость при 0°С-0,88 Дж/(г.°С). При переходе алюминия из жидкого состояния в твердое объем его уменьшается на 6,6 % (99,75% А1). Кипит алюминий при 2500 °С.Плотность алюминия меньше плотности железа в 2,9 раза, меди-в 3,3 раза.В твердом виде алюминий легко подвергается ковке, прокатке, волочению, резанию. Из него можно вытягивать тончайшую проволоку и катать фольгу. Пластичность алюминия возрастает по мере повышения, его чистоты. Временное сопротивление литого алюминия технической чистоты составляет 88-118 Па, прокатанного 176-275 Па. Относительное удлинение соответственно равно 18-25 и 3-5 %, а твердость по Бринеллю НВ 235-314 и 440-590.Алюминий имеет высокую теплопроводность и электропроводность. В зависимости от чистоты теплопроводность алюминия составляет 238 Вт/(м-°С) (99,7% А1) и 247 Вт/(м.°С) (99,99% А1). Электропроводность алюминия также зависит от его чистоты. Для алюминия технической чистоты (99,5 % А1) она составляет 62,5 % от электропроводности меди, а для алюминия высокой чистоты (99,997% А1) 65,45 %. Различные примеси влияют на электропроводность алюминия в неодинаковой степени. Наиболее сильно электропроводность снижают примеси хрома, ванадия и марганца. В меньшей степени, чем примеси, на электропроводность алюминия влияет степень его деформации и режим термической обработки. Отрицательное влияние деформации на электропроводность устраняется отжигом. Удельное электросопротивление отожженной проволоки из алюминия технической чистоты (99,7% А1) составляет (0,0279-0,0282) Ю-6 Ом.м.Следует также отметить, что алюминий обладает высокой способностью отражать световые и тепловые лучи, которая близка к отражающей способности серебра и увеличивается с повышением чистоты металла.Алюминий и сплавы на его основе делятся по способу получения на деформируемые, подвергаемые обработке давлением и литейные, используемые в виде фасонного литья; по применению термической обработки - на термически не упрочняемые и термически упрочняемые, а также по системам легирования.

11. Медь и ее сплавы

В начале, отметим такие технические характеристики меди и ее сплавов, как высокая стойкость по отношению к воздействию различных химических веществ, сохранение высоких механических свойств в условиях глубокого холода, высокие показатели теплопроводности и электропроводности.Техническая медь в зависимости от марки может иметь различное количество примесей: Bi, Sb, As, Fe, Ni, Рb, Sn, S, Zn, P, О. В наиболее чистой меди марки M00 примесей может быть до 0,01%, марки М4 - до 1%. Сплавы на медной основе в зависимости от состава легирующих элементов относятся к латуням, бронзам, медно-никелевым сплавам.Латунь. Латунями называют сплавы меди с цинком (простые латуни); содержание цинка может достигать 42 %. Если, помимо цинка, сплав содержит и другие легирующие элементы (Al, Fe, Ni, Si), сплав относят к сложным латуням. Латуни имеют повышенную прочность по сравнению с чистой медью (sigmaв до 50 кгс/мм2)(или предел выносливости до 470 МПа). Однако при содержании свыше 20% Zn появляется склонность сплава к коррозионному растрескиванию и образованию трещин при местном нагреве. Латуни широко применяют в качестве конструкционного материала, обладающего высокой коррозионной стой-костью и более прочного, чем медь.Сплавы на медной основе, в которых цинк не является основным легирующим элементом, называют бронзами. Название бронзы уточняется по главному легирующему элементу, благодаря которому бронза приобретает те или иные свойства. Широкое применение находят бронзы оловянные (2-10% Sn), алюминиевые (4-11,5% А1), кремнистые (0,5-3,5% Si), марганцевые (4,5- 5,5% Мп), бериллиевые (1,9-2,2% Be), хромистые (0,4-1% Сг).Оловянная бронза имеет хорошую коррозионную стойкость и антифрикционные свойства. Поэтому они широко применяются при изготовлении коррозионно-стойкой арматуры, для различных трубопроводов, вкладышей подшипников и т. д. Бронзы алюминиевые и кремнистые имеют высокие механические свойства и хорошую коррозионную стойкость. Они более дешевы. Если позволяют условия работы, их широко используют взамен оловянных. Марганцовистые бронзы помимо хорошей коррозионной стойкости обладают повышенной жаропрочностью. Бериллиевые бронзы имеют высокую коррозионную стойкость и после термообработки становятся немагнитными с очень высокой прочностью, соответствующей прочности стали. Из этих бронз изготовляют различные гибкие, прочные элементы в приборах и различных устройствах,Медно-никелевые сплавы могут содержать до 30% Ni, а также железо, марганец. Сплав МНЖ 5-1, прочный и коррозионно-стойкий, широко используют как конструкционный для изготовления трубопроводов и сосудов, работающих в агрессивных средах (морской воде, растворах солей, органических кислотах). Сложная композиция сплавов на медной основе, наличие разнообразных компонентов в виде примесей в технической меди обусловливают определенные трудности при сварке этих металлов.Особенности меди1. В связи с высокой температурой и теплопроводностью, затрудняющими локальный разогрев, требуются более концентрированные источники нагрева и повышенные режимы сварки. Однако в связи со склонностью меди к росту зерна при сварке многослойных швов металл каждого прохода для измельчения зерна проковывают при температурах 550-800 град. С.2. Легкая окисляемость меди при высоких температурах приводит к засорению металла шва тугоплавкими окислами. Закись меди растворима в жидком металле и ограниченно - в твердом. С медью закись образует легкоплавкую эвтектику Си-Си2О (температура плавления 1064 град. С), которая сосредоточивается по границам зерен и снижает пластичность меди, что может привести к образованию горячих трещин.3.Наличие некоторых примесей может способствовать склонности сварных соединений к образованию трещин. Так, например, висмут, образующий ряд окислов BiO, Bi2O3, Bi2O4, Bi2O5, дает легкоплавкую эвтектику с температурой плавления 270 град. С, а свинец, образующий окислы РЬО, РЬО2, РЬ2О3, дает легкоплавкую эвтектику с температурой плавления 326 град. С. По указанной причине должно быть резко ограничено содержание этих примесей (Bi < 0,002%; Pb < 0,005%), либо они должны быть связаны в тугоплавкие соединения введением в сварочную ванну таких элементов, как церий, цирконий, играющих одновременно роль модификаторов.4. При сварке латуней возможно испарение цинка (температура кипения 907 град. С, т. е. ниже температуры плавления меди). Образующийся окисел цинка ядовит, поэтому при сварке требуется хорошая вентиляция. Испарение цинка может привести к пористости металла шва. Это осложнение удается преодолеть предварительным подогревом металла до температуры 200 -300 град. С и повышением скорости сварки, уменьшающим растекание жидкого металла и испарение цинка.5. Медь в расплавленном состоянии поглощает значительные количества водорода. При кристаллизации металла сварочной ванны с большой скоростью ввиду высокой теплопроводности меди и резким уменьшением растворимости водорода в металле атомарный водород не успевает покинуть металл за счет десорбции. Закись меди восстанавливается водородом с образованием паров воды, что приводит к образованию в шве пор и трещин.6. Повышенная жидкотекучесть расплавленной меди и ее сплавов (особенно бронзы) затрудняет сварку в вертикальном и потолочном положениях, поэтому чаще всего сварку ведут в нижнем положении. Для формирования корня шва без дефектов необходимы подкладки.

12.Наклёп и её влияние на свойства стали

Повторные нагружения в пределах упругих деформаций (до предела упругости) не изменяют вида диаграммы работы стали; нагружение и разгрузка будут происходить по одной линии.

Если образец загрузить до пластической стадии и затем снять нагрузку, то он не вернется к первоначальному состоянию с сохранением прежних размеров, появится остаточная деформация С . При повторном нагружении образца после некоторого "отдыха" он снова работает упруго, повторяя прямую разгрузки, но только до уровня предыдущего нагружения. То же самое будет и в том случае, если разгрузку начать после того, когда будет пройдена вся площадка текучести. В этом случае при повторных нагружениях сталь не будет иметь площадки текучести. При повторном нагружении без перерыва диаграммы разгрузки и нагрузки имеют петлеобразный характер.

Повышение упругой работы материала в результате предшествующей пластической деформации называют наклепом. При наклепе искажается атомная решетка, она закрепляется в новом деформированном состоянии. В состоянии наклепа сталь становится более жесткой, пластичность стали снижается, повышается опасность хрупкого разрушения, что неблагоприятно сказывается на работе строительных конструкций. Наклеп возникает в процессе изготовления конструкций при холодной гибке элементов, пробивке отверстии, резке ножницами.

В некоторых случаях, когда снижение пластичности не имеет большого значения, наклеп используют для повышения пределов упругой работы (например, в тонкой высокопрочной проволоке для висячих и предварительно напряженных конструкций, в холоднотянутой арматурной проволоке). Повышение предела текучести допускается также учитывать при расчете элементов из гнутых профилей, где в зоне гиба металл получает наклеп

13.Влияние примесей и углерода на свойства сталей

Постоянные (технологические) примеси являются обязательными компонентами сталей и сплавов, что объясняется трудностью их удаления как при выплавке (Р, S), так и в процессе раскисления (Si, Mn) или из шихты - легированного металлического лома (Ni, Сг и др.).К постоянным примесям относят углерод, марганец, кремний, серу, фосфор, а также кислород, водород и азот.Постоянные примеси могут присутствовать в виде твердых и газообразных фаз. Однако они не оказывают существенного влияния на положение критических точек диаграммы Fe - Fе3С.Характер влияния этих примесей на свойства сталей и сплавов определяется их возможностью образовывать самостоятельные фазы с основным компонентом, железом, а также местом возникновения этих фаз.УглеродУглерод в соответствии с диаграммой состояния "железо-цементит" может образовать с железом твердый раствор -Fe и цементит Fе3С. Содержание цементита в сплавах можно оценивать прямо по диаграмме состояния, используя дополнительную шкалу абсцисс по содержанию цементита (рис.1), так как количество цементита в сталях пропорционально содержанию углерода.

Рис. 3. Влияние углерода на механические свойства стали и сплавов

Влияние углерода на свойства сталей, в основном, определяется свойствами цементита (закон аддитивности) и связано с изменением содержания основных структурных составляющих - феррита и цементита. Следовательно, при увеличении содержания  углерода до   1,2% (рис. 3)   возрастают   прочность, твердость, порог хладноломкости (0,1%С повышает температуру порога хладноломкости на 20°С), предел текучести, величина электрического сопротивления и коэрцитивная сила. При этом снижаются плотность, теплопроводность, вязкость, пластичность, величины относительных удлинения и сужения, а также величина остаточной индукции.Существенную роль играет то, что изменение  физических свойств приводит к ухудшению целого ряда технологических, таких как деформируемость при штамповке, свариваемость и др. Так хорошей свариваемостью отличаются низкоуглеродистые стали. Сварка средне- и особенно высокоуглеродистых сталей требует применения подогрева, замедляющего охлаждение и других технологических операций, предупреждающих образование трещин.МарганецМарганец вводят в стали как технологическую добавку для повышения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью при его содержании, не превышающем 0,8%. Марганец присутствует в сталях и сплавах в виде твердого раствора -Fe и как технологическая примесь и существенного влияния на свойства стали не оказываетКремнийКремний также вводят в сталь для раскисления. Содержание кремния как технологической примеси обычно не превышает 0,37%. Кремний присутствует в сталях и сплавах в твердом растворе -Fe и как технологическая примесь влияния на свойства стали не оказывает. В сталях, предназначенных для сварных конструкций, содержание кремния не должно превышать 0,12...0,25%.СераПределы содержания серы как технологической примеси составляют 0,035...0,06%. Сера практически нерастворима в аустените и присутствует в сталях и сплавах в виде хрупких сульфидов FeS и MnS, входящих в эвтектику с температурой плавления 985°С. Причем эта эвтектика, как правило, кристаллизуется по границам зерен.Повышение содержания серы существенно снижает механические и физико-химические свойства сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости, проявляющейся появлением надрывов по включениям FeS. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.ФосфорПределы содержания фосфора как технологической примеси составляют 0,025...0,045%. Фосфор в сталях и сплавах присутствует в твердом растворе -Fe.Фосфор, как и сера, относится к наиболее вредным примесям в сталях и сплавах. Увеличение его содержания даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости и снижает пластичность и вязкость. Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию и способствует росту зерен в металле. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.Кислород и азотКислород и азот растворяются в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами, газовой фазой). Они оказывают отрицательное воздействие на свойства, вызывая анизотропию механических свойств, повыше­ние хрупкости и порога хладноломкости, а также снижают вязкость и выносливость. При содержании кислорода более 0,03% он вызывает старение стали, а более 0,1% -красноломкость. Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250°С.ВодородВодород содержится в твердом растворе -Fe или скапливается в порах и на дислокациях. Увеличение его содержания в сталях и сплавах приводит к увеличению хрупкости. Кроме того, в изделиях проката могут возникать флокены, которые развивает водород, выделяющийся в поры. Флокены инициируют процесс разрушения. Металл, имеющий флокены, нельзя использовать в промышленности.

Дефекты при термообработке

К дефектам закалки относятся: трещины, поводки, или коробление и обезуглероживание. Главная причина трещин и поводки – неравномерное изменение объема детали при нагреве и, особенно, при резком охлаждении. Другая причина – увеличение объема при закалке на мартенсит. Трещины возникают потому, что напряжения при неравномерном изменении объема в отдельных местах детали превышают прочность металла в этих местах. Лучшим способом уменьшения напряжений является медленное охлаждение около температуры мартенситного превращения (точка М Н). При конструировании деталей необходимо учитывать, что наличие острых углов и резких изменений сечения увеличивает внутреннее напряжение при закалке. Коробление (или поводка) возникает также от напряжений в результате неравномерного охлаждения и проявляется в искривлениях деталей. Если эти искривления невелики, они могут быть исправлены, например, шлифованием. Трещины и коробление могут быть предотвращены предварительным отжигом деталей, равномерным и постепенным нагревом их, а также применением ступенчатой и изотермической закалки. Обезуглероживание стали с поверхности – результат выгорания углерода при высоком и продолжительном нагреве детали в окислительной среде. Для предотвращения обезуглероживания детали нагревают в восстановительной или нейтральной среде (восстановительное пламя, муфельные печи, нагрев в жидких средах). Образование на поверхности изделия приводит к угару металла, деформации. Это уменьшает теплопроводность и, стало быть, понижает скорость нагрева изделия в печи, затрудняет механическую обработку. Удаляют окалину либо механическим способом, либо химическим (травлением). Выгоревший с поверхности металла углерод делает изделия обезуглероженным с пониженными прочностными характеристиками, с затрудненной механической обработкой. Интенсивность, с которой происходит окисление и обезуглерожевание, зависит от температуры нагрева, т.е. чем больше нагрев, тем быстрее идут процессы. Образование окалины при нагреве можно избежать, если под закалку применить пасту, состоящую из жидкого стекла - 100 г, огнеупорной глины - 75 г, графита - 25 г, буры - 14 г, карборунда - 30 г, воды - 100 г. Пасту наносят на изделие и дают ей высохнуть, затем нагревают изделие обычным способом. После закалки его промывают в горячем содовом растворе. Для предупреждения образования окалины на инструментах быстрорежущей стали применяют покрытие бурой. Для этого нагретый до 850oС инструмент погружают в насыщенный водный раствор или порошок буры

14.Литая и деформированная сталь.

Механические свойства сталей

Предел прочности (временное сопротивление)Разница в пределе прочности литой и горячедеформированной стали составляет не более 20%, а требуемый по нормам проектирования запас прочности составляет как минимум 1,5 раза. Это означает, что запас прочности для изделия из литой стали будет соответствовать примерно 30%.

Предел текучести Является, как правило, главной характеристикой. Но при этом предел текучести для литой и горячедеформированной стали практически одинаков и может быть принят при расчете, как равный пределу текучести горячедеформированной стали. Для нержавеющих сталей характеристики прочности могут быть даже лучше.

Относительное удлинение Является важной характеристикой для изделий, работающих за пределом текучести, и служит характеристикой надежности материала до разрушения. Однако, большинство изделий должно работать без изменения своих размеров и тем самым для большей части труб этот показатель нормируется 5 - 10%. Литые трубы аналогичного химсостава имеют такие же характеристики.

При аппроксимации данного параметра для изготовления отводов, гнутья труб и других подобных операций, можно сказать, что в ряде случаев показатели растяжения и способности к гибке и сплющиванию у литых труб будут выше из-за наличия столбчатой структуры, изгиб которой происходит по принципу "гармошки".

Подобная структура возникает только при центробежном литье и является исключительной особенностью труб, полученных при помощи центробежного литья.

Относительное сужение Параметр важен на последней стадии разрушения, как показатель надежности. Для изделий, которые несут длительную нагрузку и работают в рамках предела упругости, не является существенным. Что касается сравнения литых и деформированных сталей в целом, то характеристики относительного сужения близки.

Ударная вязкость Важный параметр для сталей, работающих при ударных нагрузках, в условиях тепловых ударов и др. Является характеристикой способности материала выдерживать резкие нагрузки и максимально релаксировать возникающие напряжения, обеспечивая разрушение со скоростями ниже критических, без бегущей трещины, что предотвращает катастрофическое разрушение. В пределах рабочих нагрузок этот параметр не является ведущим.

Сравнение литых центробежнолитых и горячедеформированных сталей показывает, что эти параметры близки и ударная вязкость литых сталей достаточна для работоспособности трубных изделий.

Возможно изготовление специальных марок сталей с низким содержанием серы и фосфора и высокими значениями ударной вязкости при пониженных температурах.

УсталостьПараметр важен при динамичес ких циклических нагрузках. Принимается в расчет в специфических условиях и не является расчетным в большинстве случаев.

Характеристики усталости литых и деформированных сталей близки и зависят от марочного состава стали.

Химический состав сталейВ отличие от горячедеформированных сталей, выпускаемых строго в соответствии с ГОСТ, могут быть использованы любые композиции, наиболее целесообразные для конкретного применения.

Горячая и холодная деформация

Обработка металлов давлением основана на их способности в определенных условиях пластически деформироваться в результате воздействия на деформируемое тело (заготовку) внешних сил.

Если при упругих деформациях деформируемое тело полностью восстанавливает исходные форму и размеры после снятия внешних сил, то при пластических деформациях изменение формы и размеров, вызванное действием внешних сил, сохраняется и после прекращения действия этих сил.

Упругая деформация характеризуется смещением атомов относительно друг друга на величину, меньшую межатомных расстояний, и после снятия внешних сил атомы возвращаются в исходное положение. При пластических деформациях атомы смещаются относительно друг друга на величины, большие межатомных расстояний, и после снятия внешних сил не возвращаются в свое исходное положение, а занимают новые положения равновесия.

В зависимости от температурно-скоростных условий деформирования различают холодную и горячую деформацию.

Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла. При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен). Изменения, внесенные холодной деформацией в структуру и свойства металла, не необратимы. Они могут быть устранены, например, с помощью термической обработки (отжигом). В этом случае происходит внутренняя перестройка, при которой за счет дополнительной тепловой энергии, увеличивающей подвижность атомов, в твердом металле без фазовых превращений из множества центров растут новые зерна, заменяющие собой вытянутые, деформированные зерна. Так как в равномерном температурном поле скорость роста зерен по всем направлениям одинакова, то новые зерна, появившиеся взамен деформированных, имеют примерно одинаковые размеры по всем направлениям. Явление зарождения и роста новых равноосных зерен взамен деформированных, вытянутых, происходящее при определенных температурах, называется рекристаллизацией. Для чистых металлов рекристаллизация начинается при абсолютной температуре, равной 0,4 абсолютной температуры плавления металла. Рекристаллизация протекает с 34б определенной скоростью, причем время, требуемое для рекристаллизации, тем меньше, чем выше температура нагрева деформированной заготовки. При температурах ниже температуры начала рекристаллизации, наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нагрева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании. Остаточные напряжения создают системы взаимно уравновешивающихся сил и находятся в заготовке, не нагруженной внешними силами. Снятие остаточных напряжений при возврате почти не изменяет механических свойств металла, но влияет на некоторые его физико-химические свойства. Горячей деформацией называют деформацию, характеризующуюся соотношением скоростей деформирования и рекристаллизации, при котором рекристаллизация успевает произойти во всем объеме заготовки и микроструктура после обработки давлением оказывается равноосной, без следов упрочнения.

Чтобы обеспечить условия протекания горячей деформации, приходится с увеличением ее скорости повышать температуру нагрева заготовки (для увеличения скорости рекристаллизации).

Если металл по окончании деформации имеет структуру, не полностью рекристаллизованную, со следами упрочнения, то такая деформация называется неполной горячей деформацией. Неполная горячая деформация приводит к получению неоднородной структуры, снижению механических свойств и пластичности.

15.Процессы, протекающие при нагреве холоднодеформированного металла

Термическая обработка холоднодеформированных сплавов.Наклеп, или операция изменения структуры стали под влиянием холодной деформации, повышает прочность и снижает пластичность металла. Энергия, затраченная на произведение холодной деформации, всегда больше той энергии, которая выделяется в процессе самого деформирования (например, в виде тепла). Это означает, что часть энергии накапливается в металле. Ренгеноструктурным и микроскопическим анализами показано, что это энергия расходится на создание дополнительных искажений строения кристаллографической решетки, на сдвиги внутри зерна, на увеличение объема стали, на вытягивание зерен вдоль направления деформации - образование текстуры. Сталь после наклепа имеет повышенный уровень энергии кристаллической решетки и поэтому повышенную прочность и пониженную пластичность. Однако такое состояние стали после наклепа является термодинамечески неустойчивым. Это приводит к тому, что в металле самопроизвольно в процессе вылеживания будут протекать явления, связанные со снятием тех искажений внутрикристаллического строения, которые привели к повышению энергетического уровня наклепанного металла. Но так как эти процессы связанны с атомными перемещениями в твердом кристаллическом теле, то при комнатной температуре они идут с очень малой скоростью; при нагреве скорость этих процессов увеличивается. Вначале, при незначительном повышении температуры (для малоуглеродистой стали 200-300оС) происходит незначительное увеличение пластичности, сопровождающееся иногда падением прочности холоднодеформированного металла. Эти процессы характеризуют состояние возврата (или отдыха) наклепанной стали.При дальнейшем повышении температуры интенсивно начинается процесс перестройки вытянутых вдоль направлений деформации зерен наклепанной стали в равновесные, более крупные зерна. Это явление, называемое рекристаллизацией, сопровождается значительным падением прочности и повышением пластичности металла.В отличие от перекристаллизации рекристаллизация происходит при нагреве до температуры ниже температуры полиморфных превращений и, таким образом, изменение формы и размеров кристаллов (зерен) происходит при сохранении те же фаз (структурных составляющих) металлического сплава, которые были до протекания рекристаллизации.

16.Пластическая деформация

Пластическая деформация - сложный физико-химический процесс, в результате которого наряду с изменением формы и строения исходного металла изменяются его механические и физико-химические свойства. Рассмотрела физическую сущность процесса пластической деформации. При особых условиях охлаждения металл затвердевает в виде большого кристалла правильной формы, называемого монокристаллом. Строение монокристалла определяется соответствующей кристаллической решеткой. B промышленных условиях затвердевание металла начинается одновременно во многих центрах кристаллизации. Поэтому после затвердевания такой металл состоит не из одного кристалла, а из большого числа прочно сросшихся друг с другом кристалликов неправильной формы, называемых кристаллитами или зернами. Металлы такого строения называются поликристаллическими..Пластическая деформация монокристалла сопровождается искажениeм кристаллической структуры, образованием осколков и возникновeниeм остаточных напряжений в кристалле.Эти явления, затрудняя процесс дальнейшей деформации, вызывают изменения механических и физико-химических свойств исходного металла: прочность, твердость, электросопротивление и химическая активность увеличиваются, при oдноврeменном уменьшении пластичности, ударной вязкости, магнитной проницаемости и т. д. Совокупность изменений механических и физико-химических свойств в результате холодной пластической деформации называют упрочнением (или наклепом).Необходимо иметь в виду, что при пластической деформации никакого изменения плотности металла практически не происходит, его объем остается постоянным.При обработке давлением таких металлов происходит пластичecкая деформация отдельных зерен путем скольжения и двойникования (аналогично монокристаллу) и смещение их относительно друг друга. Деформация сопровождается раздроблением зерен и их удлинением в направлении наибольшего течения металла.В результате этого,последиий приобретает строчечную мелкозернистую структуру, отчетливо наблюдаемую под микроскопом Одновременно в зернах, так же как и при холодной деформации монокристалла, искажается кристаллическая структура, oбpазуются кристаллитныe осколки и возникают остаточные напряжения. Рассмотренные явления вызывают упрочнение поликристаллического металла.Если пластическая деформация оказывает упрочняющее влияние на металл, то повышение температуры вызывает его разупрочнение. При незначительном нагреве, увеличивающем подвижность атомов, в холоднодеформированном металле уменьшаются остаточные напряжения и, в некоторой степени, устраняется искажение кристаллической решетки. При этом форма и размеры деформированных зерен не изменяются, строчечная и волокнистая структура металла полностью сохраняются. В результате рассмотренных явлений, называемых возвратом, прочностные свойства металла уменьшаются, пластические - увеличиваются.При неполной горячей деформации рекристаллизация отсутствует, но протекает процесс возврата. Чем больше скорость деформирования и ниже температура металла, тем в меньшей степени происходит разупрочнение. Поэтому, необходимо помнить, что такой деформации нельзя подвергать малопластичные металлы и сплавы.При горячей обработке давлением упрочнение, полученное металлом в процессе пластической деформации, полностью снимается рекристаллизацией, а металл получает Равноосную микроструктуру, причем волокнистое строение сохраняется.Прочность и ударная вязкость волокнистого металла вдоль волокон выше, чем поперек волокон и это свойство деформированного металла используется при разработке технологического процесса изготовления деталей. Заготовку для будущей детали деформируют таким образом, чтобы направление волокон совпадало с направлением максимальных растягивающих напряжений, возникающих в детали при работе, а сами волокна огибали контур детали и не перерезывались при окончательной механической обработке изделия.

17.Закаливаемость стали.Под закаливаемостью понимают способность стали приобретать высокую твердость после закалки. Такая способность зависит главным образом от содержания углерода в стали: чем больше углерода, тем выше твердость. Объясняется это тем, что с повышением содержания углерода увеличивается число атомов, насильственно удерживаемых при закалке в атомной решетке железа. Иными словами, увеличивается степень пересыщения твердого раствора углерода в железе. В результате возрастают внутренние напряжения, что, в свою очередь, способствует увеличению числа дислокаций и возникновению блочной структуры.

Если в углеродистой стали содержание углерода будет меньше 0,3% (сталь 20, Ст3), то такая сталь уже не закалится. Для того чтобы понять это, следует вспомнить, что образование мартенситной структуры связано с перестройкой атомной решетки железа из гранецентрированной в объемно-центрированную. Температура, при которой происходит такая перестройка, зависит от содержания углерода. Роль углерода сводится к тому, что атомы его, находясь в решетке железа, как бы препятствуют перегруппировке атомов, которая необходима для перестройки решетки. Чем больше содержание углерода, тем ниже будет температура, при которой произойдет перестройка, т. е. образуется мартенситная структура. Зависимость температуры мартенситного превращения от содержания углерода в стали была показана на рис. 16. Как можно видеть, при содержании углерода 0,2% мартенситное превращение должно происходить при сравнительно высокой температуре — примерно 350—400°С. При такой температуре углерод еще сохраняет достаточно высокую подвижность и при перестройке решетки выходит из состояния твердого раствора, образуя химическое соединение — цементит. Пересыщение твердого раствора получается совсем незначительным, и потому структура закалки — мартенсит — не образуется.

Прокаливаемость стали. Под прокаливаемостью понимают глубину проникновения закаленной зоны, т. е. свойство стали закаливаться на определенную глубину от поверхности. Если, например, сверло диаметром 50 мм, изготовленное из инструментальной углеродистой стали, закалить в воде, а затем замерить твердость его в поперечном сечении, то окажется, что во внутренней зоне, расположенной вдоль оси сверла (сердцевине), твердость будет почти такой же, как до закалки, в то время как в наружной зоне, расположенной у поверхности, твердость резко повысится. Проверив затем микроструктуру, можно будет убедиться, что в сердцевине она будет перлитного типа, а у поверхности — мартенситного. Несквозная закалка объясняется неравномерным охлаждением детали при закалке: поверхность всегда охлаждается быстрее, чем сердцевина. Неравномерность охлаждения вызывается различными условиями теплоотвода у поверхности и в сердцевине. При погружении раскаленной детали в закалочную среду поверхность, соприкасаясь с холодной жидкостью, охлаждается с большой скоростью, в то время как отвод теплоты от сердцевины затруднен толщей горячего металла, и потому она охлаждается медленно. В результате скорость охлаждения поверхности оказывается выше критической, и поверхность закаливается, а скорость охлаждения сердцевины получается ниже критической, и последняя не закаливается. Очевидно, можно представить себе, что на некоторой глубине от поверхности Н (рис. 19) скорость охлаждения будет равна критической. Тогда ясно, что слои металла, расположенные на большей глубине, не закалятся, а слои, расположенные на меньшей глубине, т. е. ближе к поверхности, закалятся.

Глубина проникновения закаленной зоны, т. е. прокаливаемость, зависит главным образом от химического состава стали. С повышением содержания углерода до 0,8% прокаливаемость стали повышается. Дальнейшее повышение его содержания несколько снижает прокаливаемость.

За исключением кобальта все легирующие элементы, растворенные в аустените, затрудняют его распад и, следовательно, уменьшают критическую скорость закалки. В результате увеличивается прокаливаемость.

Для улучшения прокаливаемости в сталь вводят марганец, хром, никель, молибден и др. элементы. Особенно эффективно действует комплексное легирование, при котором полезное влияние отдельных элементов на прокаливаемость взаимно усиливается. Например, для стали с 0,4% С и 3,5% Ni критическая скорость закалки равна 150°С/с, а добавка 0,75% Мо снижает эту скорость до 4°С/с.

Те легирующие элементы, которые с углеродом могут давать химические соединения в виде карбидов (вольфрам, ванадий, титан и др.), повышают прокаливаемость только в том случае, если они при температуре закалки оказываются растворенными в аустените. Если же они будут оставаться в составе карбидов, то прокаливаемость снижается. В связи с этим с целью наиболее полного растворения карбидов и повышения благодаря этому прокаливаемости иногда значительно увеличивают температуру нагрева при закалке.

Из всего сказанного о влиянии легирующих элементов на прокаливаемость стали следуют два очень важных вывода:

1) при использовании легированных сталей можно получить сквозную прокаливаемость в деталях большого сечения, которые невозможно закалить насквозь при изготовлении их из углеродистой стали;

2) применение легированной стали вместо углеродистой позволяет снизить скорость охлаждения, необходимую для закалки, и использовать в качестве охладителя взамен воды — масло. В результате снижаются закалочные напряжения, уменьшается коробление и опасность образования трещин.

Наряду с химическим составом на прокаливаемость оказывают влияние и некоторые другие факторы: однородность аустенита, отсутствие в нем карбидов и иных примесей и включений, величина зерна и др. Чем однороднее аустенит и больше размер его зерен, тем выше будет прокаливаемость.

18.зависит в основном от структуры, от содержания углерода и легирующих элементов. Интенсивность износа инструмента зависит от структуры обрабатываемого материала. Она будет наибольшей для тростита, меньшей — для сорбита и перлита, минимальной — для феррита. Различное влияние структур на износ инструмента объясняется их твердостью. Так, твердость феррита составляет НВ 785-1170, перлита — НВ 1160, сорбита — НВ 2650—3140, тростита НВ 3730—4120 МПа. Структура также влияет на чистоту обработанной поверхности. При повышении твердости металла чистота обработанной поверхности возрастает за счет снижения степени пластической деформации. С увеличением содержания углерода обрабатываемость стали по скорости резания ухудшается, а по шероховатости поверхности улучшается. Чем больше содержание углерода в стали, тем она имеет более высокую прочность и твердость и меньшую теплопроводность. Все это приводит к снижению стойкости инструмента. Легирующие компоненты (хром, марганец, кремний, вольфрам и др.) также ухудшают обрабатываемость стали — снижается ее теплопроводность, увеличивается твердость и прочность. Кроме того, легирующие элементы (ванадий, вольфрам, молибден и др.) имеют склонность к образованию карбидов, которые способствуют повышению интенсивности износа инструмента. Из легированных сталей наихудшей обрабатываемостью обладают аустенитные стали (нержавеющие, жаропрочные, высокомарганцовистые). Допустимая скорость резания для титановых сплавов еще ниже, чем для аустенитных сталей. Это объясняется высокой прочностью и твердостью (ов = 1000 : 1500 МПа, НВ 3000—3510 МПа), весьма низкой теплопроводностью и другими особыми свойствами титановых сплавов. Теплопроводность титана меньше теплопроводности вольфрама в 13 раз, алюминия — в 17 и железа — в 54 раза. Серый чугун обрабатывается труднее, чем конструкционная уг-леродистая сталь. Это объясняется низкой его теплопроводностью и наличием вкраплений цементита, карбидов кремния, обладающих сильной истирающей способностью. Наличие графита способствует улучшению обрабатываемости чугуна, в частности дает возможность вести обработку с большими скоростями резания, но ухудшает чистоту . Обрабатываемость чугуна улучшается при содержании в нем кремния до 2,75%. При большем его содержании износостойкость инструмента снижается, так как происходит упрочнение феррита. При содержании хрома свыше 1 % образуются его карбиды и поэтому допустимая скорость резания уменьшается. Ванадий влияет на обрабатываемость подобно хрому. Обрабатываемость отбеленного чугуна, содержащего большое количество цементита, плохая и его почти невозможно обрабатывать быстрорежущим инструментом. Высокопрочный чугун с шаровидной формой графита с точки зрения скорости резания обладает лучшей обрабатываемостью, чем серый чугун с пластинчатым графитом при равной твердости. Причем, в отличие от серого чугуна, обрабатываемость высокопрочного чугуна может быть улучшена за счет его термообработки (отжига или высокотемпературного отпуска). Медные сплавы (бронза) обладают меньшим пределом прочности и большей теплопроводностью, что улучшает их обрабатываемость. Алюминиевые сплавы лучше обрабатываются, чем сталь. Скорость резания при обработке алюминиевых сплавов может быть в 6-8 раз больше, чем при обработке стали. Скорость резания (при постоянной стойкости инструмента) с применением СОЖ может быть повышена. Например, при обработке стали с эмульсией скорость увеличивается на 15-25%. При определении допустимой скорости резания учитывается износ инструмента. Если работа производится инструментом с учетом его износа выше нормального, то скорость должна быть уменьшена. Тип резца также оказывает влияние на скорость резания. Закономерности изменения скорости резания в зависимости от различных факторов, рассмотренных выше, относятся к проходным резцам. Расточные резцы работают в более тяжелых условиях, чем проходные (возможен большой вылет резца при расточке длинных отверстий, что ухудшает виброустойчивость, хуже теплоотдача, затруднен подвод жидкости). Это учитывается введением в формулу скорости резания поправочного коэффициента 0,9. Кроме того, стойкость расточных резцов с уменьшением диаметра обработки, при всех прочих равных условиях, снижается, что объясняется увеличением силовой нагрузки и возрастанием температуры резания.

19.Влияние скорости охлаждения и состава на структуру чугуна

Влияние скорости охлаждения на структуру металла шва и околошовной зоны. В случае низких скоростей охлаждения в чугунном шве и участке околошовной зоны может быть обеспечено сохранение структуры серого чугуна при определенном его составе. При большой скорости охлаждения практически при любом составе чугуна в шве и участке 2 околошовной зоны будет иметь место отбеливание. Сварка чугуна с подогревом. (300-400° С) уменьшает скорость охлаждения. При такой температуре подогрева в шве и на участке 2 околошовной зоны в зависимости от количества графитизаторов может быть получен либо белый, либо серый чугун.При высоком подогреве (600-650° С) скорость охлаждения при эвтектической температуре становится весьма низкой, отбеливания не происходит. Замедление охлаждения приводит к распаду аустенита с образованием ферритной или перлитно-ферритной металлической основы. Таким образом, наиболее эффективное средство предотвращения отбеливания металла шва и высокотемпературного участка околошовной зоны, а также резкой закалки на участке околошовной зоны - высокий предварительный или сопутствующий подогрев чугуна до температуры 600-650° С. Сварку с таким подогревом называют горячей сваркой чугуна. Высокий подогрев и замедленное охлаждение способствуют также ликвидации трещин и пористости за счет увеличения времени существования жидкой ванны и лучшей дегазации ее, а также уменьшения температурного градиента, термических напряжений.Сварку с подогревом до температур 300-400° С называют полугорячей, а без предварительного подогрева - холодной сваркой чугуна. При полугорячей и холодной сварке чугуна широко используют металлургические и технологические средства воздействия на металл с целью повышения качества сварных соединений. К их числу относятся:- легирование наплавленного металла элементами - графитизаторами, с тем чтобы при данной скорости охлаждения получить в шве структуру серого чугуна;- легирование наплавленного металла такими элементами, которые позволяют получить в шве перлитно-ферритную структуру, характерную для низкоуглеродистой стали, путем связывания избыточного углерода в карбиды, более прочные, чем цементит, и равномерно распределенные в металле;введение в состав сварочных материалов кислородосодержащих компонентов с целью максимального окисления углерода (выжигания его) и получения в металле шва низкоуглеродистой стали;применение сварочных материалов, обеспечивающих в наплавленном металле получение различных сплавов цветных металлов: медно-никелевых, медно-железных, железоникелевых и др., обладающих высокой пластичностью и имеющих температуру плавления, близкую к температуре плавления чугуна.Горячая сварка чугуна.Наиболее радикальным средством борьбы с образованием отбеленных и закаленных участков шва и околошовной зоны и образованием пор и трещин служит подогрев изделия до температуры 600-650° С и медленное охлаждение его после сварки.