Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
стенд КИПиА.doc
Скачиваний:
44
Добавлен:
13.08.2019
Размер:
34.8 Mб
Скачать

2. Измерение расхода жидкостей, газов и паров

Для контроля и управления нефтехимическим производством большое значение имеет измерение расхода и количества различных веществ: газов, жидкостей и паров. Расход вещества — это его количество, протекающее через сечение трубопровода в единицу времени (1):

(1)

где F - площадь потока в сечение трубопровода;

V - скорость потока.

Объёмный расход (Q) выражают в единице объёма вещества, протекающего в единицу времени: м3/с, м3/мин, м3/ч, см3/с, и т.д.

Массовый расход (Qм) измеряют в единице массы протекающей в единицу времени: кг/с, кг/мин, кг/ч, г/ч и т.д.

Приборы для измерения расхода называются расходомерами.

Интегрирующие приборы, используемые для измерения объёма или массы за некоторый промежуток времени, называют счётчиками.

Для измерения расхода веществ применяют расходомеры, основанные на различных принципах действия: расходомеры переменного и постоянного перепада давлений, переменного уровня, электромагнитные, ультразвуковые, вихревые, кориолисовые, тепловые и турбинные.

Измерение расхода и количества является сложной задачей, поскольку на показания приборов влияют физические свойства измеряемых потоков: плотность, вязкость, соотношение фаз в потоке и т. п. Физические свойства измеряемых потоков, в свою очередь, зависят от условий эксплуатации, главным образом от температуры и давления.

Если условия эксплуатации расходомера отличаются от условий, при которых производилась его градуировка, то ошибка в показаниях прибора может значительно превысить допустимое значение. Поэтому для серийно выпускаемых приборов установлены ограничения области их применения: по свойствам измеряемого потока, максимальной температуре и давлению, содержанию твердых частиц или газов в жидкости и т.п. [6].

2.1. Кориолисовые расходомеры

Кориолисовые расходомеры предназначены для прямого измерения массового расхода, плотности, температуры, вычисления объемного расхода жидкостей, газов и взвесей [6].

В основу работы кориолисовых расходомеров заложен эффект открытый Густавом Кориолисом. Проявляется этот эффект как воздействие сил инерции вращающейся системы отчёта на движущийся относительно неё материальный объект.

Принцип действия расходомера основан на использовании сил Кориолиса. Они возникают в колебательной системе, в которой одновременно имеет место поступательное и вращательное движения. Величина кориолисовой силы зависит от массы жидкости (газа) и скорости ее движения в системе, следовательно, от массового расхода жидкости (газа).

Кориолисовый расходомер состоит из сенсора и электронного преобразователя сигнала (датчика). Сенсор имеет одну или две измерительные трубки (обычно U-образные), концы которых закреплены неподвижно. Между трубками на специальном креплении расположена задающая катушка, создающая колебания трубок. По бокам трубок на входе и выходе установлены детекторы, определяющие положение трубок друг относительно друга.

Измеряемая среда, поступающая в датчик, разделяется на равные половины, протекающие через две сенсорные трубки. Движение задающей катушки приводит к тому, что трубки колеблются вверх-вниз в противоположных направлениях. Колебания трубок подобны колебаниям камертона и имеют амплитуду менее 1 мм и частоту около 100 Гц.

Сборки магнитов и катушек - соленоидов, называемые детекторами, установлены на сенсорных трубках (рис. 3). Катушки смонтированы на одной трубе, магниты – на другой. Каждая катушка движется сквозь однородное магнитное поле постоянного магнита. Сгенерированное напряжение от каждой катушки детектора имеет форму синусоидальной волны. Эти сигналы представляют собой движение одной трубки относительно другой.

Рис. 3. Схема сенсора кориолисового расходомера

При движении измеряемой среды через датчик проявляется физическое явление, известное как эффект Кориолиса. Поступательное движение среды во вращательном движении сенсорной трубки приводит к возникновению кориолисового ускорения, которое, в свою очередь, приводит к появлению кориолисовой силы. Эта сила направлена против движения трубки, приданного ей задающей катушкой. Когда трубка движется вверх во время половины ее собственного цикла, то для жидкости, поступающей внутрь, сила Кориолиса направлена вниз (рис. 4). Как только жидкость проходит изгиб трубки, направление силы меняется на противоположное. Таким образом, во входной половине трубки сила, действующая со стороны жидкости, препятствует смещению трубки, а в выходной – способствует. Это приводит к изгибу трубки. Когда во второй фазе вибрационного цикла трубка движется вниз, направление изгиба меняется на противоположное.

Рис. 4. Направление силы Кориолиса в сенсорной трубке

Сила Кориолиса и, следовательно, величина изгиба сенсорной трубки прямо пропорциональны массовому расходу жидкости. Детекторы измеряют фазовый сдвиг при движении противоположных сторон сенсорной трубки. Как результат изгиба сенсорных трубок – генерируемые детекторами сигналы не совпадают по фазе. Так, сигнал от входной стороны запаздывает по отношению к сигналу с выходной стороны. Разница во времени между сигналами измеряется в микросекундах и прямо пропорциональна массовому расходу. Чем больше сдвиг фаз между сигналами, тем больше массовый расход [1].

Таким образом, расход определяется путём измерения временной задержки между сигналами электромагнитных преобразователей, а плотность - измерением резонансной частоты колебаний (резонансная частота является функцией массы, а масса пропорциональна плотности). Термометр сопротивления на поверхности трубки учитывает изменение модуля упругости материала трубки.

Величина силы Кориолиса находится по формуле (2):

Fk=2∙m·ω∙vср, (2)

где масса протекающей через трубку среды,

vср средняя скорость потока среды,

циклическая частота принудительных колебаний конца трубки.

Достоинства: высокая точность измерений (до 0,1%), длительный срок службы, измерение больших расходов, нет ограничений на способ установки, измерение одновременно 3-х параметров (расхода, массы, плотности), измерение параметров любых сред, на показания прибора не влияет изменение параметров среды, расход которой измеряется.

Недостатки: относительная сложность устройства вторичных преобразователей, ограниченное давление эксплуатации [14].

Кориолисовый массовый расходомер ROTAMASS

П реобразователь ROTAMASS представляет собой массовый расходомер, использующий кориолисовые силы (рис. 5). Массомер монтируется непосредственно на трубопровод и не требует прямолинейных участков выше или ниже по течению [10, 11].

Рис. 5. Внешний вид кориолисового массового расходомера ROTAMASS

Расходомер измеряет расход по частоте колебаний измерительной трубки. Такие измерения могут быть подвержены влиянию внешних воздействий или вибраций, передаваемых по трубопроводу. Для прибора ROTAMASS была разработана уникальная конструкция «корпус в корпусе», эффективно устраняющая негативное влияние внешних воздействий и вибраций. На рис. 6 показана структура корпуса ROTAMASS. Внутренний корпус устанавливается во внешний, подсоединяемый к фланцам. Концы трубок крепятся к внутреннему корпусу. Двойная структура позволяет поглощать внешние воздействия и вибрации, передаваемые через фланцы на внешний корпус, сводя к минимуму деформацию трубок, закрепленных на внутреннем корпусе. В конструкции также используются две трубки, которые колеблются в противоположных направлениях. Сенсорные катушки для измерения вибрации монтируются на одной из трубок, а магнит – на другой. Благодаря такой конфигурации, трубки не столь подвержены влиянию внешней вибрации. Кроме того, настройка резонансной частоты колебаний трубок на уровне, значительно превышающем уровень частоты внешних воздействий, сводит к минимуму их негативное влияние. Еще одна структурная особенность – наклон линейного участка U-образных трубок, позволяющий жидкости стекать по трубкам под действием силы тяжести [1].

Рис. 6. Конфигурация детектора прибора ROTAMASS

Характеристики измерения расхода:

- Номинальный диапазон расхода – 0 ÷5 т/час;

- Точность - ± 0,10%;

- Повторяемость - ± 0,05 %;

- Стабильность нуля – 0,135 кг/час.

Характеристики измерения плотности:

- Диапазон - 0,3 ÷ 5 кг/л;

- Точность - ± 3 г/л.

Характеристики измерения температуры:

- Диапазон - -200 ÷ +230 °С;

- Точность - ± 1 °С;

Источник питания:

- 90-264 В переменный ток, 50 Гц.

Маркировка датчика имеет следующую расшифровку:

- RCCT36 - модель датчика (номинальный расход 2,7 т/ч = 45 кг/мин);

- А - источник питания: 100-240 В переменного тока;

- М - кабельный ввод: М20х1,5;

- 02 - подключение к технологической линии DN 25;

- QR1 - свидетельство о первичной поверке [10].