Скачиваний:
313
Добавлен:
01.05.2014
Размер:
523.78 Кб
Скачать

3. Принципы и этапы моделирования.

Теория моделирования является одной из составляющих теории автоматизации процессов управления. Одним из ее основополагающих принципов является утверждение: система представляется конечным множеством моделей, каждая из которых отражает определенную грань её сущности.

К настоящему времени накоплен значительный опыт, дающий основание сформулировать основные принципы построения моделей. Не смотря на то, что при построении моделей очень велика роль опыта, интуиции, интеллектуальных качеств исследователя, все же многие ошибки и неудачи в практике моделирования обусловлены незнанием методологии моделирования и несоблюдением принципов построения моделей.

К основным из них можно отнести:

- принцип соответствия модели целям исследования;

- принцип соответствия сложности модели требуемой точности результатов моделирования;

- принцип экономичности модели;

- принцип соразмерности;

- принцип модульности построения моделей;

- принцип открытости;

- принцип коллективности разработки (в создании модели принимают участие специалисты предметной области и в области моделирования);

- принцип сервисности (удобства пользования моделью).

Для одной и той же системы можно построить множество моделей. Эти модели будут отличаться степенью детализации и учета тех или иных особенностей и режимов функционирования реального объекта, отражать определенную грань сущности системы, ориентироваться на исследование определенного свойства или группы свойств системы. Поэтому важно четко сформулировать цель моделирования уже на начальном этапе построения модели. При этом следует также учитывать, что модель строится для решения конкретной задачи исследования. Опыт создания универсальных моделей не оправдал себя ввиду громоздкости создаваемых моделей и их непригодности к практическому применению. Для решения каждой конкретной задачи нужно иметь свою модель, отражающую наиболее важные стороны и связи с точки зрения исследования. Важность конкретного задания целей моделирования диктуется еще и тем, что все последующие этапы моделирования проводятся с ориентацией на определенную цель исследования.

Модель носит всегда приближенный характер по сравнению с оригиналом. Каким должно быть это приближение? Излишняя детализация усложняет модель, делает её дороже, затрудняет исследование. Необходимо найти компромисс между степенью сложности модели и ее адекватностью моделируемому объекту.

В общем плане проблема “точность - сложность” формулируется в виде одной из двух оптимизационных задач:

- задается точность результатов моделирования, а затем минимизируется сложность модели;

- имея модель определенной сложности, стремятся обеспечить максимальную точность результатов моделирования.

Можно привести некоторые практические рекомендации по уменьшению сложности моделей:

- Уменьшение числа характеристик, параметров, возмущаю­щих факторов. Конкретизируя цели моделирования из множества характеристик системы либо исключают те, которые могут быть определены без моделирования или являются, с точки зрения ис­следователя, второстепенными, либо производится их объединение. Возможность реализации таких процедур связана с тем обстоя­тельством, что при моделировании не всегда целесообразно учиты­вать всё многообразие возмущающих факторов. Допускается неко­торая идеализация условий функционирования. Если целью моде­лирования является не просто фиксация свойств системы, но и оп­тимизация тех или иных решений по построению или функциони­рованию системы, то помимо ограничения числа параметров системы следует выявить и те параметры, которые иссле­дователь может изменять.

- Изменение природы характеристик системы. Допускается с целью упрощения построения и исследования модели рассматривать некоторые переменные параметры в качестве постоянных, дискретные в качестве непрерывных и наоборот.

- Изменение функциональной зависимости между параметрами. Нелинейная зависимость обычно заменяется линейной, дискретная функция непрерывной. В последнем случае упрощением может быть и обратное преобразование.

- Изменение ограничений. При снятии ограничений процесс получения решения, как правило, упрощается. И, наоборот, при введении ограничений получить решение оказывается значительно сложнее. Варьируя ограничениями, возможно определить область решений, очерченную граничными значениями показателей эффективности функционирования системы.

Процесс моделирования сопровождается определенными затратами различных ресурсов (материальных, вычислительных и т. п.). Эти затраты тем больше, чем сложнее система и чем выше требования к результатам моделирования. Экономичной моделью будем считать такую модель, эффект от использования результатов моделирования которой имеет определенную норму превышения по отношению к расходам ресурсов, использованных на ее создание и использование.

При разработке математической модели необходимо стремится к соблюдению так называемого принципа соразмерности. Это означает, что систематическая ошибка моделирования (т. е. отклонение модели от описания моделируемой системы) должна быть соразмерной с погрешностью описания, в том числе и с погрешностью исходных данных. Кроме того, точность описания отдельных элементов модели должна быть одинаковой независимо от их физической природы и применяемого математического аппарата. И, наконец, должны быть соразмерны между собой систематическая ошибка моделирования и погрешность интерпретаций, а также погрешность усреднения результатов моделирования.

Суммарная ошибка моделирования может быть уменьшена, если использовать различные способы взаимной компенсации ошибок, обусловленных разными причинами. Другими словами, необходимо соблюдать принцип баланса ошибок. Суть этого принципа заключается в компенсации ошибок одного типа ошибками другого типа. Например, ошибки, вызванные неадекватностью модели, уравновешиваются ошибками исходных данных. Строго формальной процедуры соблюдения этого принципа не разработано, но опытным исследователям удается успешно использовать этот принцип в своей работе.

Модульность построения значительно “удешевляет” процесс создания моделей, так как позволяет применять накопленный опыт реализации типовых элементов, модулей при разработке сложных моделей систем. Кроме того, такая модель легко поддается модификации (развитию).

Открытость модели предполагает возможность включения в ее состав новых программных модулей, необходимость которых может выявиться в ходе исследования и в процессе совершенствования модели.

Качество модели во многом будет зависеть от того, насколько успешно решаются организационные аспекты моделирования, а именно привлечение специалистов различных областей. Особенно это важно для начальных этапов, где формулируется цель исследования (моделирования) и разрабатывается концептуальная модель системы. Обязательным является участие в работе представителей заказчика. Заказчик должен четко понимать цели моделирования, разработанную концептуальную модель, программу исследований, уметь анализировать и интерпретировать результаты моделирования.

Конечные цели моделирования могут быть достигнуты только путем проведения исследований с использованием разработанной модели. Исследования заключаются в проведении экспериментов с помощью модели, успешная реализация которых во многом обусловлена тем сервисом, который предоставляется в распоряжение исследователя, иными словами, удобством пользования моделью, под которым понимается удобство пользовательского интерфейса, ввода-вывода результатов моделирования, полнота средств отладки, простота интерпретации результатов и т. д.

Процесс моделирования можно условно разбить на ряд этапов.

Первый этап включает в себя: уяснение целей исследования, места и роли модели в процессе системных исследований, формулирование и конкретизацию цели моделирования, постановку задачи на моделирование.

Второй этап - это этап создания (разработки) модели. Начинается содержательным описанием моделируемого объекта и заканчивается программной реализацией модели.

На третьем этапе проводится исследование с помощью модели, заключающееся в планировании и проведении экспериментов.

Завершается процесс моделирования (четвертый этап) анализом и обработкой результатов моделирования, выработкой предложений и рекомендаций по использованию результатов моделирования на практике.

Непосредственное построение модели начинается с содержательного описания моделируемого объекта. Объект моделирования описывается с позиций системного подхода. Исходя из цели исследования определяется совокупность элементов, их возможные состояния, указываются связи между ними, даются сведения о физической природе и количественных характеристиках исследуемого объекта (системы). Содержательное описание может быть составлено в результате достаточно обстоятельного изучения исследуемого объекта. Описание ведется, как правило, на уровне качественных категорий. Такое предварительное, приближенное представление объекта называют обычно вербальной моделью. Содержательное описание объекта, как правило, самостоятельного значения не имеет, а служит лишь основой для дальнейшей формализации объекта исследования - построения концептуальной модели.

Концептуальная модель объекта является промежуточным звеном между содержательным описанием и математической моделью. Она разрабатывается не во всех случаях, а лишь тогда, когда из-за сложности исследуемого объекта или трудностей формализации некоторых его элементов непосредственный переход от содержательного описания к математической модели оказывается невозможным или нецелесообразным. Процесс создания концептуальной модели носит творческий характер. Именно в связи с этим иногда говорят, что моделирование является не столько наукой, сколько искусством.

Следующим этапом моделирования является разработка математической модели объекта. Создание математической модели преследует две основные цели: дать формализованное описание структуры и процесса функционирования исследуемого объекта и попытаться представить процесс функционирования в виде, допускающем аналитическое или алгоритмическое исследование объекта.

Для преобразования концептуальной модели в математическую необходимо записать, например, а аналитической форме все соотношения между существенными параметрами, их связь с целевой функцией и задать ограничения на значения управляемых параметров.

Такую математическую модель можно представить в виде:

где U - целевая функция (функция эффективности, критериальная функция);

- вектор управляемых параметров;

- вектор неуправляемых параметров;

{x,y} - ограничения на значения управляемых параметров.

Математический аппарат, используемый для формализации, конкретный вид целевой функции и ограничений определяются существом решаемой задачи.

Разработанная математическая модель может быть исследована различными методами - аналитическими, численными, “качественными”, имитационными.

С помощью аналитических методов можно произвести наиболее полное исследование модели. Однако применить эти методы можно только для модели, которую удается представить в виде явных аналитических зависимостей, что удается лишь для сравнительно простых систем. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик объекта (экспресс-оценки), а также на ранних стадиях проектирования систем.

Основная часть исследуемых реальных объектов не поддается исследованию аналитическими методами. Для исследования таких объектов могут быть использованы численные и имитационные методы. Они применимы к более широкому классу систем, для которых математическая модель представляется либо в виде системы уравнений, допускающей решение численными методами, либо в виде алгоритма, имитирующего процесс ее функционирования.

Если полученные уравнения не удается решить аналитическими, численными или имитационными методами, то прибегают к использованию “качественных” методов. “Качественные” методы позволяют оценивать значения искомых величин, а также судить о поведении траектории системы в целом. К подобным методам, наряду с методами математической логики и методами теории расплывчатых множеств, относят и ряд методов теории искусственного интеллекта.

Математическая модель реальной системы является абстрактным, формально описанным объектом, исследование которого ведется также математическими методами, и главным образом, с помощью средств вычислительной техники. Следовательно, при математическом моделировании должен быть определен метод расчета или иначе - разработана алгоритмическая или программная модель, реализующая метод расчета.

Одну и ту же математическую модель можно реализовать на ЭВМ с помощью разных алгоритмов. Все они могут различаться точностью решения, временем расчета, объемом занимаемой памяти и другими показателями.

Естественно, что при исследовании нужен алгоритм, обеспечивающий моделирование с требуемой точностью результатов и минимальными затратами машинного времени и других ресурсов.

Математическая модель, являясь объектом машинного эксперимента, представляется в виде программы для ЭВМ (программной модели). При этом необходимо выбрать язык и средства программирования модели, произвести расчет ресурсов на составление и отладку программы. В последнее время процесс программирования моделей все больше автоматизируется (такой подход будет рассмотрен в разделе “Автоматизация моделирования сложных военных организационно-технических систем”). Созданы специальные алгоритмические языки моделирования, предназначенные для программирования широкого класса моделей (применение языка GPSS (дословный русский перевод – язык моделирования дискретных систем) для моделирования вычислительных систем будет также рассмотрено в последующих главах). Они обеспечивают простоту реализации таких общих задач, возникающих при моделировании, как организация псевдопараллельного выполнения алгоритмов, динамическое распределение памяти, ведение модельного времени, имитация случайных событий (процессов), ведение массива событий, сбор и обработка результатов моделирования и т. п. Описательные средства языков моделирования позволяют идентифицировать и задавать параметры моделируемой системы и внешних воздействий, алгоритмы функционирования и управления, режимы и требуемые результаты моделирования. Языки моделирования при этом выступают как формализованный базис создания математических моделей.

Прежде чем приступить к проведению эксперимента на модели, необходимо подготовить исходные данные. Подготовка исходных данных начинается еще на этапе разработки концептуальной модели, где выявляются некоторые качественные и количественные характеристики объекта и внешних воздействий. Для количественных характеристик необходимо определить их конкретные значения, которые будут использоваться в виде исходных данных при моделировании. Это трудоемкий и ответственный этап работы. Очевидно, что достоверность результатов моделирования однозначно зависит от точности и полноты исходных данных.

Как правило, сбор исходных данных является весьма сложным и трудоемким процессом. Это вызвано рядом причин. Во-первых, значения параметров могут быть не только детерминированными, но и стохастическими. Во-вторых, не все параметры оказываются стационарными. Особенно это относится к параметрам внешних воздействий. В-третьих, зачастую речь идет о моделировании несуществующей системы или системы, которая должна функционировать в новых условиях. Не учет любого из этих факторов приводит к существенным нарушениям адекватности модели.

Конечные цели моделирования достигаются путем использования разработанной модели, заключающиеся в проведении экспериментов с моделью, в результате которых определяются все необходимые характеристики системы.

Эксперименты с моделью, как правило, проводятся по определенному плану. Это вызвано тем, что при ограниченных вычислительных и временных ресурсах обычно не представляется возможным провести все возможные эксперименты. Поэтому возникает необходимость в выборе определенных сочетаний параметров и последовательности проведения эксперимента, т. е. ставится задача построения оптимального плана достижения цели моделирования. Процесс разработки такого плана называется стратегическим планированием. Но при этом не все задачи, связанные с планированием экспериментов, решаются полностью. Появляется необходимость в уменьшении длительности машинных экспериментов при обеспечении статистической достоверности результатов моделирования. Этот процесс получил название тактического планирования.

План эксперимента может быть заложен в машинную программу исследований и выполняться автоматически. Однако чаще всего стратегия исследования предусматривает активное вмешательство исследователя в эксперимент с целью коррекции плана эксперимента. Такое вмешательство обычно реализуется в диалоговом режиме.

В ходе экспериментов обычно измеряется множество значений каждой характеристики, которые потом обрабатываются и анализируются. При большом количестве реализаций, воспроизводимых в процессе моделирования, объем информации о состояниях системы может быть настолько значительным, что ее хранение в памяти ЭВМ, обработка и последующий анализ оказываются практически невозможными. Поэтому необходимо таким образом организовать фиксацию и обработку результатов моделирования, чтобы оценки искомых величин формировались постепенно в ходе моделирования.

Поскольку выходные характеристики зачастую являются случайными величинами или функциями, то суть обработки заключается в вычислении оценок математических ожиданий, дисперсий и корреляционных моментов.

Для того, чтобы исключить необходимость хранения в машине всех измерений, обработку обычно проводят по рекуррентным формулам, когда оценки вычисляют в процессе эксперимента методом нарастающего итога по мере проведения новых измерений.

По обработанным результатам экспериментов производится анализ зависимостей, характеризующих поведение системы с учетом среды. Для хорошо формализуемых систем это можно сделать с помощью корреляционных, дисперсионных или регрессионных методов. К анализу результатов моделирования можно отнести и задачу чувствительности модели к вариациям ее параметров.

Анализ результатов моделирования позволяет уточнить множество информативных параметров модели, а следовательно, и уточнить саму модель. Это может привести к существенному изменению первоначального вида концептуальной модели, выявлению явной зависимости характеристик, появлению возможности создания аналитической модели системы, переопределению весовых коэффициентов векторного критерия эффективности и к другим модификациям начального варианта модели.

Завершающим этапом моделирования является использование результатов моделирования, их перенос на реальный объект - оригинал. В конечном счете результаты моделирования обычно используются для принятия решения о работоспособности системы, прогнозирования поведения системы, для оптимизации системы и т. п.

Решение о работоспособности принимается по тому, выходят или не выходят характеристики системы за установленные границы при любых допустимых изменениях параметров. Прогноз обычно является главной целью любого моделирования. Он заключается в оценке поведения системы в будущем при определенном сочетании ее управляемых и неуправляемых параметров.

Оптимизация представляет собой определение такой стратегии поведения системы (естественно, с учетом среды), при которой достижение цели системы обеспечивалось бы при оптимальном (в смысле принятого критерия) расходе ресурсов. Обычно в качестве методов оптимизации выступают различные методы теории исследования операций.

В процессе моделирования, на всех его этапах исследователь вынужден постоянно решать вопрос - правильно ли создаваемая модель будет отображать оригинал. До тех пор пока этот вопрос не будет решен положительно, ценность модели незначительна.

Требование адекватности, как уже отмечалось выше, находится в противоречии с требованием простоты, и это нужно постоянно помнить при проверке модели на адекватность. В процессе создания модели адекватность объективно нарушается из-за идеализации внешних условий и режимов функционирования, исключения тех или иных параметров, пренебрежения некоторыми случайными факторами. Отсутствие точных сведений о внешних воздействиях, определенных особенностях структуры и процесса функционирования системы, принятые способы аппроксимации и интерполяции, эвристические предположения и гипотезы также ведут к уменьшению соответствия между моделью и оригиналом. Вследствие отсутствия достаточно проработанной методики оценки адекватности, на практике такую проверку производят либо сравнивая результаты доступных экспериментов на объекте с аналогичными результатами, полученными в ходе машинных экспериментов, либо путем сравнения результатов, полученных на аналогичных моделях. Могут применяться и другие косвенные способы проверки на адекватность.

По результатам проверки на адекватность делаются выводы о пригодности модели к проведению экспериментов. Если модель соответствует требованиям, то на ней проводят плановые эксперименты. В противном случае модель уточняется (корректируется) или полностью перерабатывается. При этом оценку адекватности модели необходимо проводить на каждом этапе моделирования, начиная с этапа формирования цели моделирования и постановки задачи на моделирование и заканчивая этапом выработки предложений по использованию результатов моделирования.

При корректировке или переработке модели могут быть выделены следующие типы изменений: глобальные, локальные и параметрические.

Глобальные изменения могут быть вызваны серьезными ошибками на начальных этапах моделирования: при постановке задачи на моделирование, при разработке вербальной, концептуальной и математической моделей. Устранение таких ошибок обычно ведет к разработке новой модели.

Локальные изменения связаны с уточнением некоторых параметров или алгоритмов. Локальные изменения требуют частичного изменения математической модели, но могут привести к необходимости разработки новой программной модели. Для уменьшения вероятности таких изменений рекомендуется сразу разрабатывать модель с большей степенью детализации, чем необходимо для достижения цели моделирования.

К параметрическим относятся изменения некоторых специальных параметров, называемых калибровочными. Для повышения адекватности модели путем параметрических изменений следует заранее выявить калибровочные параметры и предусмотреть простые способы варьирования ими.

Стратегия корректировки модели должна быть направлена на первоочередное введение глобальных, затем локальных и, наконец, параметрических изменений.

На практике этапы моделирования иногда проводятся изолированно друг от друга, что отрицательным образом сказывается на результатах в целом. Разрешение данной проблемы лежит на путях рассмотрения в единых рамках процессов построения модели, организации экспериментов на ней и создания программного обеспечения моделирования.

Моделирование необходимо рассматривать как единый процесс построения и исследования модели, имеющий соответствующую программно-аппаратную поддержку. При этом следует отметить два важных аспекта.

Методологический аспект - выявление закономерностей, приемов построения алгоритмических описаний систем, целенаправленного преобразования полученных описаний в пакеты взаимосвязанных машинных моделей, составлением применительно к таким пакетам сценариев и планов работы, направленных на достижение прикладных целей моделирования.

Творческий аспект - искусство, мастерство, умение достигать в ходе машинного моделирования сложных систем практически полезных результатов.

Реализация концепции системного моделирования как целостной совокупности методов построения и использования моделей возможна лишь при соответствующем уровне развития информационных технологий.

Соседние файлы в папке Лекции по войне