Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ НА ГОС ПО ЭЛЕКТРООБОРУДОВАНИЮ.docx
Скачиваний:
81
Добавлен:
14.09.2019
Размер:
765.47 Кб
Скачать

1.1. Классификация электрических сетей

Электрические сети предназначены для распределения и передачи электроэнергии и состоят из электрораспределительных щитов и линий электропередачи. Электрические сети подразделяют на силовые, аварийные и приемников.

Силовая электрическая сеть предназначена для распреде­ления электроэнергии на участках от ГРЩ до приемников или преобра­зователей электроэнергии. Различают следу

ющие типы силовых элект­рических сетей: фидерную, магистральную и магистрально-фидерную ( рис. 6.1 ).

Рис. 6.1. Принципиальные схемы силовых электрических сетей:

а – фидерная; б – магистральная; в – магистрально-фидерная

В случае использования фидерной сети (рис. 6.1, а) ответственные и наиболее мощ-

ные приемники П1 и П2 получают питание непосредствен­но от ГРЩ по отдельным фиде-

рам, а приемники ПЗ-П8 - от электрорас­пределительных щитов (районного РРЩ1, отсеч-

ных ОРЩ1-ОРЩЗ и групповых ГрРЩ1-ГрРЩ2, соединенных с ГРЩ фидерами.

При использовании магистральной сети (рис. 6.1, б) приемники электроэнергии П1-П6 получают питание от электрораспределитель­ных щитов РЩ1-РЩЗ или магистраль

ных коробок МК1-МКЗ, присоеди­ненных параллельно к магистральным линиям МЛ1-МЛЗ.

На современных судах применяют смешанную, магистрально-фидерную сеть (рис. 6.1, в). В этой сети приемники П1 получают питание по фидерам, а приемники П2-П5 - по магистральным линиям МЛ1 и МЛ2.

. Сравнение свойств судовых электрических сетей

Сравним свойства разных типов силовых электрических сетей.

Фидерная сеть более надежна по сравнению с магистральной, так как при повреж

дении любого фидера лишается питания отдельный прием­ник или группа приемников, в то время как при повреждении магист­ральной линии прекращается питание всех приемни

ков или части их (в зависимости от места повреждения линии).

Вместе с тем фидерная сеть имеет увеличенную массу по сравнению с магистраль-

ной. Ее применяют для питания отдельных ответственных приемников или групп прием­ников (например, рулевого и якорного устройств, механизмов СЭУ).

Магистральную сеть используют в основном для питания неот­ветственных прием-

ников (например, сети освещения). При этом к одной линии электропередачи (магистра-

ли) подключают светильники и розетки в нескольких смежных помещениях.

Магистрально-фидерная сеть соединяет достоинства и недостатки фидерной и магистральной сетей.

Выбор того или иного типа силовой сети зависит от ряда факторов, среди которых наиболее существенными являются назначение судна, мощность его электроэнергетиче-

ской системы, а также количество и распределение приемников электроэнергии.

Аварийная электрическая сеть предназначена для рас­пределения электроэнергии на участке от АРЩ до приемников, пере­чень которых определен Правилами Регистра.

Электрическая сеть приемников предназначена для распределения электроэнергии от определенного распределительного щита или преобразователя электроэнергии до одно

именных приемников. К таким сетям относят сети основного освещения, аварийного осве

щения, переносного освещения, сеть установок слабого тока, сеть радиотрансляции и др.

Сеть основного освещения применяется для снабжения электроэнергией осветитель

ных приборов и получает питание, как правило, от электрораспределительных щитов раз-

личного назначения: наружного освещения, освещения МО, служебных и пассажирских помещений и др.

Напряжение сетей основного освещения составляет 220 В (реже 127 В). Правила Регистра СССР допускают применение этих сетей для питания маломощных бытовых электроприборов (каютных вентилято­ров, холодильников и др.), а также электрических грелок.

Сеть аварийного освещения является составной частью сети основ­ного освещения. Эта сеть получает питание от АРЩ и поэтому снаб­жается электроэнергией практически бесперебойно: при нормальном режиме работы основной электростанции от ГРЩ через шины АРЩ, а при выходе ее из строя от АДГ. При обесточивании основной и аварий­ной электростанций автоматически включается сеть аварийного освещения напряжением 12 или 24 В, питающая от АБ ограниченное количество осветительных точек в постах управ

ления, коридорах и проходах.

Сеть переносного освещения применяется для снабжения электро­энергией перенос

ных светильников напряжением 12 или 24 В, позво­ляющих усилить местную освещен-

ность при проведении ТО или ре­монтных работ. Для получения указанных напряжений используют понижающие трансформаторы соответствующей мощности.

Сеть установок слабого тока обеспечивает работу телефонов внутренней связи, машинных телеграфов, рулевых указателей, звон­ковой и пожарной сигнализации и других приемников ограниченной мощности.

Сеть радиотрансляции соединяет радиотрансляционный узел с громкоговорителя-

ми, установленными в различных помещениях судна.

Электрические сети выполняют изолированными от корпуса судна.

Исключение составляют электрические сети маломерных судов (не­больших букси-

ров, катеров, мотоботов и др.), на которых допускается применение корпуса судна в качестве второго провода при напряже­ниях до 30 В переменного и 55 В постоянного тока.

Передачу электроэнергии постоянного и 1-фазного переменного тока осуществля-

ют 2-проводными линиями электропередачи, а 3-фазного тока - 3-проводными ( редко 4-проводными) линиями электро­передачи. В последнем случае линия электропередачи со-

стоит из трех фазных и одного нулевого провода и применяется на плавсредствах {дебар-

кадерах, брандвахтах и др.), получающих электроснабжение с берега.

ВОПРОС №9

Структурные схемы судовых электростанций ( СЭС )

Структура СЭС должна обеспечивать параллельную и раздельную работу генерато-

ров, прием питания с берега, защиту генераторов и линий электропередачи от токов КЗ, возможность снятия напряжения на отдельных секциях ГРЩ при ТО и ремонте, а также экономичную работу электростанции. Современные суда имеют разнообразные струк­турные схемы СЭС, которые можно свести к двум типам:

1. с одной системой сборных шин;

2. с двумя системами сборных шин.

На большинстве транспортных судов с мощностью электростанции до 3 МВт и напряжением 400 В применяют СЭС с о д н о й с и с т е м о й сборных шин (рис. 1.6).

Рис. 1.6. Структурная схема СЭС с одной системой сборных шин

Система состоит из секций I-V. Секции I, II служат для подключения генераторов G1-G4 и наиболее ответствен­ных приемников. При помощи секционного автоматического выключа­теля QS1 можно осуществлять раздельную или параллельную работу генераторов в разных сочетаниях. Переключатель QS2 обеспечивает поочередное подключение к секции I или II распределительной секции III, от которой питаются приемники, работающие в основном на стоян­ке. Через автоматический выключатель QF6 возможно снабжение судна электроэнергией с берега. Приемники напряжением 220 В (элект­рона-

гревательные приборы, освещение и др.) получают электроэнергию от секций IV и V.

Если секционный выключатель QS3 включен, возмож­на параллельная или поочередная работа трансформаторов Т1 и Т2 на объединенные шины секций IV и V.

Наличие секционных аппаратов QS1- QS3 позволяет снимать напряжение с любой секции при ТО.

На большинстве транспортных судов СЭС имеют 3…4 основных ГА, для каждого из которых выделяется отдельная секция шин в средней части ГРЩ, а крайние секции используются для приемников электро­энергии. Для коммутации секций применяют как АВ, так и разъедини­тели. Последние представляют собой рубильники без дугогашения и не допускают размыкания шин под нагрузкой.

При мощности СЭС свыше 3 МВт и невозможности размещения на судне несколь

ких электростанций применяют СЭС с двумя сис­темами сборных шин, электрически не-

связанных между собой (рис. 1.7).

Рис. 1.7. Структурная схема СЭС с двумя системами сборных шин

Приемники электроэнергии равномерно распределены между обеими системами. Группа приемников П1 (например, научное обору­дование) питается от верхней системы шин, а общесудовые приемни­ки П2 - от нижней. Подобная система высоконадежна, маневренна в работе и удобна при ремонте. Однако двойной комплект АВ для каждого генератора увеличивает размеры ГРЩ и удорожает стоимость судовой электростанции.

Кроме приведенных выше схем, возможны иные варианты построения структур-

ных схем cудовых электростанций ( рис. 1.8 ).

Рис. 1.8 . Структурные схемы судовых электростанций транспортных судов

На рис. 1.8 изображены:

а ) СЭЭС с тремя ДГ и одним АДГ ( рис. 1.8, а );

б ) СЭЭС с тремя ДГ, одним ТГ и одним АДГ ( рис. 1.8, б );

в ) СЭЭС с четырьмя ДГ и одним АДГ( рис. 1.8, в ).

Там же:

1, 2 – соответственно основные и резервные приемники электроэнергии ходового

режима;

3 – фидер электроснабжения с берега;

4 – приемники стояночного режима;

5 – приемники освещения;

6 – бытовые приемники электроэнергии.

ВОПРОС №10

Регуляторные характеристики АРЧ

Регуляторная характеристика представляет собой зависимость частоты вращения n приводного двигателя от мощности Р генератора при фиксированном положении регулирующего органа – рейки топливного насоса ( рис. 3.1).

Рис. 3.1. Астатическая ( 1 ) и статическая ( 2 ) регуляторная характеристики

приводных двигателей генераторных агрегатов

Основным параметром регуляторной характеристики является наклон или статизм в ( % )

δ = [ ( n - n ) / n ]100 ( 3.1 ),

где n и n - частоты вращения соответственно холостого хода и номиналь-

ная, об/мин.

Для астатической характеристики δ = 0, т. е. частота вращения приводного двигате-

ля ГА не зависит от нагрузки генератора (см. рис. 2.1, характеристика 1). Иначе говоря, определенному значению частоты вращения ПД соответствует множество значений мощ-

ности генератора. Это не позволяет обеспечить пропорциональное распреде­ление актив-

ных нагрузок параллельно работающих синхронных генераторов.

Иначе говоря, ПД с астатической регуляторной характеристикой нужно применять только при одиночной работе ГА с целью идеальной стабилизации частоты вращения ПД.

При параллельной работе ПД должны иметь статическую регуляторную характери

стику ( пояснение см. ниже ).

Распределять реактивную нагрузку между параллельно работающими генератора-

ми можно двумя способами:

1. вручную;

2. автоматически.

В первом случае оператор ( электромеханик или вахтенный механик ) одновремен-

но поворачивает рукоятки реостатов возбуждения обоих генераторов в разные стороны - у нагружаемого генератора по часовой стрелке, у разгружаемого – против часовой стрелки.

При повороте рукоятки по часовой стрелке сопротивление реостата уменьшается, а ток возбуждения увеличивается, что приводит к увеличению реактивной части тока нагруз

ки, т.е. этот генератор принимает на себя реактивную нкгрузку.

При повороте рукоятки против часовой стрелки происходит обратный процесс.

Сами рукоятки реостатов возбуждения выведены на лицевую часть секции каждого генератора ( генераторной секции ).

Автоматическое распределение реактивной нагрузки, как сказано выше, выполняет сам реактивный компенсатор.

Однако, вне зависимости от того, вручную или автоматически переводится нагруз-

ка, для ее перевода надо увеличить или уменьшить ток возбуждения генератора.

Изменение тока возбуждения приводит к перемещению внешних характеристик генераторов параллельно самим себе – при увеличении тока возбуждения характеристика

перемещается вверх, при уменьшении тока возбуждения – вниз..

Основной причиной неравномерного распределения реактивных нагрузок является

разный наклон ( статизм ) внешних характеристик параллельно работающих генераторов,

даже если они одного типа.

Напомним, что наклон внешней характеристики, или статизм (%), определяется изменением напряжения при переходе от режима холостого хода к номинальному:

Δ U = [ ( U - U ) / U ]*100 ( 3.1 ),

где U и U - напряжения соответственно холостого хода и номинального.

Рис. 3.6. Внешние характеристики СГ с разным статизмом

При этом меньшему статизму ( наклону ) характеристики соответствует больший ток нагрузки I > I , что следует из сравнения внешних характеристик 1 и 2 (рис. 3.6 ).

Таким образом, при одинаковом напряжении U на шинах ГЭРЩ генераторы нагружены по разному – 1-й перегружен, а 2-й недогружен.

Регулирование реактивных нагрузок может осуществляться двумя способами:

1. вручную;

2. автоматически.

Для ручного распределения реактивных нагрузок надо увеличить ток возбуждения генератора с меньшим током нагрузки и одновременно уменьшить у генератора с боль-

шим током нагрузки. При этом внешние характеристики СГ переместятся параллельно самим себе: характерис­тика 2 вверх, до положения характеристики 2', а характеристика 1 вниз, до положения характеритики 1'. Изменение токов возбужде­ния надо прекратить в точке А, в которой реактивные нагрузки обоих генераторов равны.

Автоматическое регулирование реактивных нагрузок обеспечивают специальные устройства - реактивные компенсаторы ( компенсаторы реактивной мощности ).

Процесс перемещения внешних характеристик 1 и 2 в положение 1', 2' одинаков

Как при ручном, так и автоматическом регулировании. Разница состоит лишь в том, что характеристики перемещаются при ручном регулировании характеристики за счет измене

ния токов возбуждения генераторов вручную, а при автоматичеком – путем автоматиче-

ского изменения токов возбуждения генераторов.

ВОПРОС №11

Приемники электроэнергии СЭЭС

Основные сведения

Приемник электроэнергии - это устройство, предназначенное для преобразования электроэнергии в другой вид энергии.

Приемники электроэнергии обеспечивают безопасность плавания, безаварийную работу энергетической установки, сохранность грузов и нормальные бытовые условия экипажа. На многих судах - лихтеровозах, ледоко­лах, паромах, земснарядах, плавкранах - электроэнергия применяется для привода гребных винтов и специальных технологических механиз­мов.

Классификация приемников электроэнергии

Приемники электоэнергии классифицируют по трем основным признакам:

1. назначению;

2. степени важности ( ответственности );

3. режиму работы.

По н а з н а ч е н и ю приемники электроэнергии делят на следую­щие группы:

средства навигации и связи - гирокомпас, лаг, эхолот, радиолока­торы, радиопелен

гаторы, радиостанция;

механизмы судовых систем и устройств - насосы, вентиляторы, компрессоры;

палубные механизмы - грузовые лебедки и краны, рулевое уст­ройство, брашпили, шпили, автоматические швартовные лебедки;

бытовые механизмы и приборы - климатическая установка, оборудование камбуза, прачечной;

электрическое освещение.

По с т е п е н и в а ж н о с т и приемники электроэнергии подразде­ляют на 3 группы:

особо ответственные приемники, перерыв в питании которых может привести к аварии судна и гибели людей. К ним относятся радио- и навигационное оборудование в соответствии с Правилами по конвенционному оборудованию морских судов, рулевое устройство, пожарный насос, аварийное освещение и др. На грузовых судах валовой вместимостью 300 рег. т и более, а также на некоторых других судах приемники этой группы питаются практически бесперебойно от основной, а при ее обесточивании - от аварийной электростанции;

ответственные приемники, обеспечивающие работу СЭУ, управле­ние судном и сохранность груза. В эту группу входит основная часть судовых приемников электроэнергии - насосы, вентиляторы, компрес­соры, якорные и швартовные механизмы, грузовые устройства, средст­ва внутрисудовой связи и сигнализации и др. Эти приемники получают питание во всех режимах работы основной СЭС;

малоответственные приемники, допускающие перерыв питания в аварийных ситуациях или при перегрузке СЭС - бытовая вентиляция, камбузное оборудование и др.

По р е ж и м у р а б о т ы различают приемники электроэнергии с продолжитель-

ным S1, кратковременным S2, повторно-кратковремен­ными S3-S5 и перемежающимися S6-S8 режимами.

В продолжительном режиме работают ЭП насосов постоянной подачи, вентилято-

ров, ком­прессоров, воздуходувок и др.; в кратковременном - ЭП шпилей, брашпилей, шлюпочных и траповых лебедок; в повторно-кратковре­менных - грузовые лебедки и краны; в перемежающихся - технологи­ческое оборудование судов технического флота.

Основную полю производимой электроэнергии на судах потребляют ЭД. Для ЭП постоянного тока, работающих в продолжительном режиме, применяют электродвигатели общесудового исполнения серий П и 2П в диапазонах мощностей 0,1 - 200 кВт и частот вращения 750-3000 об/мин для серии П и 750-4000 об/мин для серии 2П.

Для ЭП перемен­ного тока используют асинхронные электродвигатели серии 4А в диапазонах мощ

ностей 0,1 - 315 кВт с пятью уровнями синхронных частот вращения ( 600, 750, 1000, 1500 и 3000 об/мин).

Для приемников кратковременного и повторно-кратковременного режимов с большой частотой включений, тяжелыми условиями пуска и частыми реверсами на по­стоянном токе применяют электродвига

тели серии ДПМ мощностью до 100 кВт, серии Д800 мощностью 120-350 кВт и серии ДП мощностью 136-540 кВт, а на переменном токе -асинхронные электродвигатели серии МАП в диапазоне мощностей 1-100 кВт.

Электродвигатели серии 2П могут питаться от тиристорных преобразователей постоян­ного тока, серии МАП в специальном исполнении — от тиристорных преобразователей частоты с регулируемой частотой в пределах 5-80 Гц для 1-скоростных и 5-20 Гц для обмоток малой скорости 2- и 3-скоростных ЭД.

Электродвигатели серии ВМАП являются взрывозащищенной модификацией элект­родвигателей серии МАП, устанавливаются в судовых помещениях, где возможно образо­вание взрывоопасных смесей газов и паров, и выдерживают до 20 внутренних взрывов без утраты работоспособности.

Эксплуатационные качества приемников электроэнергии

Э к с п л у а т а ц и о н н ы е к а ч е с т в а приемников электроэнергии оказывают существенное влияние на режим работы СЭЭС.

Прямой пуск АД при недостаточной суммарной мощности включенных генерато-

ров приводит к понижению частоты тока и провалам напряжения, что может повлечь выпа

дение генератора из синхронизма, остановку ПД генератора, а также отключение работаю

щих машин и механизмов. Для ограничения пусковых токов АД применяют пуск переклю

че­нием со "звезды" на "треугольник", а также автотрансформаторный, реакторный и дру-

гие способы пуска.

Асинхронные электродвигатели, работающие с недогрузкой, перегру­жают сеть и генераторы реактивными токами, не позволяя использо­вать полностью мощность генера-

торов. Эффективным способом компен­сации реактивной мощности является применение конденсаторных батарей с автоматическим регулированием емкости, подключаемых к шинам СЭС.

Не выключенные вовремя приемники ЭЭ перегружают судовую электростанцию и линии электропередачи, снижают степень электро- и пожаробезопасности.

ВОПРОС №12

Выбор количества и мощности генераторов в режимах работы судна

Правильный выбор состава генераторов позволяет обеспечить безаварийную и эко-

номичную работу СЭС. Для выбора используют результаты расчета нагрузки СЭС во всех режимах работы.

Общую установленную мощность генераторов находят по режиму с наиболь­шим значением нагрузки, после чего приступают к выбору количества и мощности генераторов в каждом режиме. Для этого намечают не­сколько вариантов состава генераторов СЭС,

Сравнивают их по технико-экономическим показателям и выбирают оптимальный вариант.

При выборе необходим учитывать т р е б о в а н и я П р а в и л Р е г и с т р а :

1. на каждом судне должно быть не менее двух основных источников электроэнер

гии, причем одним из них может быть ВГ;

2. мощность генераторов должна быть такой, чтобы при выходе из строя любого из них оставшиеся обеспечили питание ответственных приемников электроэнергии в режи-

мах ходовом, аварийном и манев­ров;

3. суммарная мощность всех генераторов переменного тока должна быть достаточ-

ной для пуска самого мощного АД в случае выхода из строя любого генератора.

Кроме того, при выборе генераторов руководствуются следующим:

1. нагрузка выбранных генераторов при работе в продолжительных режимах (ходо-

вой, стоянка) должна составлять 70- 90 % номинальной, а при работе в кратковременных режимах (маневров, аварийный) нагрузка ДГ может быть снижена до 50-60 %, ТГ - до 40-50 %, ВГ - до любого уровня;

2. количество генераторов СЭС в большинстве случаев составляет 2-4, при этом 2 или 3 генератора продолжительно работают параллель­но, а один находится в резерве.

3. целесообразно выбирать генераторы одного типа, что обеспечивает взаимозаме-

няемость деталей и узлов генераторов, а также облегчает их ТО;

4. установка стояночного ДГ меньшей мощности по сравнению с основными в боль

шинстве случаев нецелесообразна;

5. увеличение количества генераторов посредством уменьшения единичной мощно

сти позволяет повысить их загрузку, но усложняет схему СЭС и затрудняет обслуживание электростанции.

Мощность аварийных источников электроэнергии определяется количеством и мощностью особо ответственных приемников, перечень которых оговаривается Правилами Регистра СССР.

ВОПРОС №13

Классификация АРЧ

В настоящее время принята следующая классификация АРЧ ( таблица 3.1.).

Таблица 3.1.

Классификация регуляторов частоты вращений вала приводных двигателей ГА

Тип регулятора

Выполняемые функции

По назначению и режимности работы

Однорежимный

Поддерживает один скоростной режим

Двухрежимный

Поддерживает два скоростных режима ( минимально устойчивой и номинальной частоты вращения )

Всережимный

Поддерживает любой скоростной заданный режим двигателя

( выше минимально устойчивой частоты вращения )

Предельный

Включается в работу только в случае превышения номинальной частоты вращения

По типу измерительной части регулятора

Механический

Входной сигнал ( частота вращения ) преобразуется измерите-

лем регулятора в механическое перемещение

Гидравлический

Входной сигнал ( частота вращения ) преобразуется в энергию

давления масла

Электрический

Входной сигнал ( частота вращения ) преобразуется в электри-

ческую величину ( напряжение или ток ) и механическое пере

мещение

По способу воздействия измерительного устройства на регулирующий орган

Прямого действия

Перемещение рейки ТНВД происходит только за счет энергии,

сообщаемой ей измерительной частью регулятора

Непрямого действия

Выходной сигнал измерительной части регулятора передается на топливную рейку усиленным ( через усилитель )

По количеству входных сигналов

Одноимпульсные

Работает по отклонению только одной величины ( частоты вращения )

Двухимпульсные

Работает по отклонению двух величин ( частоты вращения и

Активной нагрузки генератора )

По виду регуляторной характеристики

Астатический

Поддерживает частоту вращения постоянной при любых нагруз

ках

Статический

Поддерживает частоту вращения коленчатого вала дизеля в установленных пределах Δn при изменении нагрузки

Комбинированный

В зависимости от настройки может работать как по статиче-

ской, так и по астатической характеристике

По осуществляемому закону регулирования

Интегральный

( И - регулятор )

Отклонение частоты вращения влияет только на скорость пере-

мещения рейки ТНВД

Пропорциональный

( П – регулятор )

Отклонение частоты вращения влияет только на величину пере

мещения рейки топливных насосов

Пропорционально-интегральный

( ПИ- регулятор )

Отклонение частоты вращения влияет на величину и скорость перемещения рейки топливных насосов

По типу обратных связей

С жесткой обратной связью

Осуществляет пропорциональный закон регулирования ( П – ре

гулятор ). Регуляторная характеристика статическая

С гибкой обратной связью

Осуществляет пропорционально-интегральный закон регулиро-

вания ( ПИ – регулятор ), Регуляторная характеристика астати-

ческая.

ВОПРОС №14

Требования Правил Регистра к ПД ГА

Двигатели, предназначенные для привода генераторов, должны удовлетворять сле­-

дующим требованиям:

каждый двигатель, приводящий в действие генератор, должен иметь регулятор

часто­ты вращения, характеристики которого должны удовлетворять следующим требова

ниям:

.1. при мгновенном сбросе 100% нагрузки генератора кратковременное изменение

час­тоты вращения двигателя не должно превышать 10% расчетной частоты вращения;

.2. при мгновенном набросе нагрузки от нулевой до 50% расчетной нагрузки генера

то­ра, а также при последующем (после достижения установившейся частоты вращения) набро­се оставшихся 50% нагрузки генератора кратковременное изменение частоты вращения дви­гателя не должно превышать 10% расчетной частоты вращения.

.3. при параллельной работе генераторов переменного тока в диапазоне от 20 до

100% общей нагрузки распределение ее на каждый генератор должно происходить про-

порцио­нально их мощности и не должно отличаться более чем на 15% от расчетной нагрузки большего из генераторов или на 25% от расчетной нагрузки рассматриваемого генератора в зависимости от того, что меньше;

.4. при любых нагрузках от нулевой до 100% расчетной нагрузки генератора устано

­вившаяся частота вращения двигателя не должна превышать расчетную более чем на 5%;

.5. установившаяся частота вращения при сбросах и набросах нагрузки генератора

должна достигаться не менее чем за 5 с;

.6. установившаяся частота вращения не должна колебаться более чем на ±1% ча-

стоты вращения, соответствующей конкретной установившейся нагрузке генератора.

Регулятор частоты вращения приводного двигателя аварийного генератора должен

иметь характеристики, удовлетворяющие требованиям пункта .1. при сбросе и набросе 100% нагруз­ки генератора.

Регулятор частоты вращения должен иметь устройство для местного и дистанцион

но­го изменения частоты вращения в пределах ± 10%.

В дополнение к регулятору частоты вращения каждый приводной двигатель мощно­

стью 220 кВт и более должен иметь отдельный предельный выключатель, отрегулирован-

ный таким образом, чтобы частота вращения двигателя не могла превысить расчетную более чем на 15%.

Предельный выключатель, включая его приводной механизм, должен быть незави

си­мым от регулятора частоты вращения.

Генераторы должны рассчитываться на непрерывную работу с учетом снижения мощности при эксплуатации судна.

При коротких замыканиях в судовой сети генераторы должны обеспечивать величи

ну установившегося тока короткого замыкания, достаточную для срабатывания защитных уст­ройств.

У генераторов с независимым приводом должно обеспечиваться регулирование на­пряжения в пределах, указанных в разделе 9.5 и 9.6 настоящего пособия.

ВОПРОС №15

Причины, влияющие на напряжение судовых синхронных генераторов

На напряжение судовых синхронных генераторов влияют 3 причины:

1. частота вращения ПД ( дизеля, турбины );

2. изменение тока нагрузки генератора;

3. нагрев при работе обмоток статора и ротора генератора.

Рассмотрим действие этих причин более подробно.

1. При изменении частоты вращения ПД изменяются сразу два параметра синхрон-

ного генератора:

1. частота тока генератора

f =

2. ЭДС обмотки статора генератора

Е = 4,44 f w Ф,

где р – число пар полюсов на роторе генератора ( величина постоянная );

n – частота вращения приводного двигателя генератора, об / мин;

4,44 – постоянный коэффициент;

f – частота переменного тока;

w – число витков фазной обмотки ( величина постоянная );

Ф – магнитный поток возбуждения генератора.

Из приведеннях формул следует, что при уменьшении частоты вращения ПД умень

шаются частота тока генератора, его ЭДС, а значит, и напряжение, и наоборот.

2. Основными приемниками ЭЭ на судах являются асинхронные двигатели. Они создают для синхронных генераторов активно-индуктивную нагрузку.

Действие активной и индуктивной составляющих тока нагрузки ( тока обмотки статора ) проявляется по разному. Так, при увеличении тока нагрузки:

.1. активная составляющая увеличивает тормозной электромагнитный момент гене-

ратора, что приведет к уменьшению скорости ПД и снижению напряжения СГ;

.2. индуктивная составляющая ослабляет магнитный поток генератора, что также

приводит к уменьшению его напряжения.

Таким образом, при набросе нагрузки каждая составляющая тока нагрузки снижает напряжение генератора.

3. При работе генератора его две обмотки - обмотка статора и обмотка возбуждения ( на роторе ), нагреваются, потому сопротивление обмоток увеличивается. В результате

увеличивается падение напряжения на активном сопротивлении обмотки статора, а также и уменьшается ток возбуждения. В обоих случаях напряжение генератора уменьшается.

Компенсация действия причин, вызывающих изменение напряжения синхронных генераторов

Современные АРЧ и АРН позволяют успешно компенсировать действие причин, вызывающих изменение напряжения генераторов. При этом, в случае, если действие ка-

ких-либо причин не в состоянии компенсировать АРЧ, это делает АРН.

Например, если АРЧ дизеля ( турбины ) работает ненадежно, имеющийся в схеме АРН генератора узел частотной коррекции ( см. ниже ) изменяет в нужном направлении ток возбуждения генератора, поэтому напряжение получается стабильным.

Так, в случае, если частота вращения приводного двигателя генератора меньше но-

минальной, что приводит к уменьшению частоты тока и напряжения генератора, этот узел увеличивает ток возбуждения и тем самым восстанавливает напряжение.

Стабилизацию напряжения при изменении тока нагрузки по величине и характеру обеспечивает одновременное действие АРЧ и АРН.

Например, при набросе нагрузки на генератор АРЧ увеличивает подачу топлива, компенсируя увеличение тормозного электромагнитного момента генератора и стабилизи

руя частоту тока, а АРН увеличивает ток возбуждения генератора, восстанавливая напря-

жение до номинального ( см. ниже ).

Стабилизацию напряжения при нагреве генератора обеспечивается при помощи уз-

ла температурной компенсации в составе АРН ( см. ниже ). При нагреве этот узел авто-

матически увеличивает ток возбуждения генератора, восстанавливая напряжение до номи-

нального.

ВОПРОС №16

Классификация судовых распределительных устройств

Судовые электрораспре­делительные устройства классифицируют по следующим основным признакам:

а ) по назначению

главный, предназначенный для присоединения источников элект­роэнергии к судо-

вой силовой сети, управления их работой и распреде­ления электроэнергии;

аварийный, являющийся частью аварийной СЭС и предназначен­ный для присоеди-

нения аварийных источников электроэнергии к аварийной сети, управления их работой и распределения электроэнер­гии;

групповой, предназначенный для распределения электроэнергии между группой приемников одинакового назначения;

приемника, предназначенный для подачи электроэнергии на отдельный приемник, а также управления его работой;

электроснабжения с берега, предназначенный для присоединения судовой сети суд-

на к береговой электрической сети или сети другого судна;

генераторный, предназначенный для передачи электроэнергии от генератора к определенному ГРЩ, а также для местного управления генератором в тех случаях, когда генератор и ГРЩ размещены в разных отсеках судна (от генераторного щита могут полу-

чать электропитание отдельные приемники электроэнергии);

соединительный электрический ящик (щит), представляющий собой судовое элект-

рораспределительное устройство, предназначенное для соединения электрических цепей;

сигнализации и контроля, предназначенный для подачи сигналов (звуковых, световых) о состоянии контролируемых помещений, установок, систем, ЭП и других объектов;

б ) по месту раположения на судне

районный, предназначенный для распределения электроэнергии в пределах опреде-

ленного архитектурного района судна и обеспечивающий электро­энергией несколько от-

сечных щитов;

отсечный, предназначенный для распределения электроэнергии в пределах отсека судна;

в ) по конструктивному исполнению на каркас­ные и блочные. Щиты в каркасном исполнении изготовляют, как правило, по индивидуальным чертежам, что затруд-

няет их производ­ство и увеличивает стоимость. Блочные РЩ выпускают в виде нормали­зованных серий на напряжении 30 В постоянного тока и 220 и 380 В при частоте 50 и 400 Гц переменного тока. При необходимости из отдельных блочных ящиков можно комплек-

товать РЩ любых размеров и для любой схемы.

г ) по степени защищенности от воздействия окружающей среды различают защи-

щенные ( IР21 ), брызгозащищенные ( IР23 ) и водозащищенные ( IР55 ) распределитель-

ные устройства. Ввод кабелей в щиты брызгозащищенного исполнения выполняют снизу через отвер­стия с обрамлениями, исключающими повреждение оболочки кабелей, а в щи-

ты водозащищенного исполнения - через индивидуальные или групповые сальники.

д ) по роду тока различают РЩ постоянного и переменного 1- и 3-фазного тока;

е ) по наличию коммутационно-защитной аппаратуры все РЩ подразделяют на 2 типа: без выключающих устройств и с вы­ключающими устройствами.

В РЩ без выключающих устройств содержатся только предохрани­тели типа ИП постоянного тока напряжением 30 В и типа ПК переменного тока напряжением 380 В. Такие РЩ применяют на маломерных судах.

В обозначение РЩ входит тип, количество групп и номинальный ток предохрани

телей.

Например, ЩИПК2-50 [Щ - щит; ИП - предохранители типа ИП; К -для маломер-

ных судов ( катера); 2 - количество групп; 50 - номиналь­ный ток, А].

Обычно РЩ с выключающими устройствами бывают двух видов:

  1. с пакетными выключателями и предохранителями;

  2. с автоматическими выключателями.

РЩ первого вида, как правило, не применяют для питания 3-фазных АД. Это объяс

няется тем, что при перегорании предохранителя в одной фазе наступает 1-фазный режим работы АД с после­дующим его перегревом и выходом из строя. В то же время срабатыва-

ние АВ вследствие КЗ в любой фазе приводит к полному отключению асинхронного двига

теля от питающей сети.

Районные, отсечные и групповые РЩ применяют в сетях постоян­ного тока напря

жением 220 В при частоте 400 Гц. В качестве выклю­чающих устройств в перечисленных РЩ используют АВ типов АК-50 и АС-25.

ВОПРОС №17

Основные сведения

Промышленные автоматические выключатели предназначены:

  1. для автоматического отключения электрических цепей в аварийных случаях;

  2. для нечастых включений и отключений электрических цепей при нормальних

условиях работы.

К аварийным случаям относят:

1.короткое замыкание в электрической цепи;

2. перегрузку ( по току ) электрической цепи.

Автоматические выключатели могут иметь два вида токовых расцепителей:

1. электромагнитные, срабатывающие мгновенно при токах короткого замыкания в 2...20 раз больше номинального;

2. комбинированные, имеющие в одном корпусе электромагнитный и тепловой

расцепители. Тепловой расцепитель отключает автоматический выключатель при токах перегрузки, превышающих номинальный в 1,25...1,8 раза.

Автоматические выключатели только с тепловым расцепителем не выпускаются.

Для защиты электрических цепей только от токов перегрузки служат тепловые реле ( см. ниже ).

Короме токовых расцепителей, автоматические выключатели могут иметь мини-

мальный расцепитель ( по напряжению ), отключающий выключатель при снижении напряжения до определенного значения.

В соответствии с требованиями Регистра, наличие этого расцепителя обязательно

в генераторных автоматических выключателях.

В большинстве типов автоматических выключателях для приемников электроэнер-

гии этот расцепитель отсутствует, кроме выключателей типа АКЗ.

В зависимости от времени срабатывания при коротком замыкании, автоматические выключатели делят на два вида:

1. неселективные, срабатывающие без выдержки времени;

2. селективные, срабатывающие с выдержкой времени.

Неселективные автоматические выключатели применяют для защиты приёмников

электроэнергии – электродвигателей, нагревательных и осветительных приборов.

Неселективные автоматические выключатели в пластмассовом защитном корпусе

называют установочными.

Селективные автоматические выключатели применяют для защиты генераторов постоянного и переменного тока. Задержка отключения выключателя ( не более 1 с ) необ

ходима для того, чтобы генератор не отключался пусковыми токами мощных электродви

гателей.

Для получения такой задержки используют т.н. селективную приставку – электро-

механическое или электронное реле максимального тока, срабатывающее с выдержкой времени.

На судах применяются генераторные выключатели серий АМ, АМ-М, В, В-М и

выключатели для приемников электроэнергии серий А3100, А3500, А3700, АК50, АК63,

АКЗ и др.

Буква „М” в обозначении серии генераторных выключателей означает, что данные выключатели, кроме ручного, имеют электродвигательный ( моторный ) привод для дис-

танционного включения и отключения выключателя.

В совокупности эти серии охватывают отрезок шкалы с токами от 0,6 до 5500 А и напряжеиями до 500 В переменного тока и 440 В постоянного тока.

Специально изготовленные АВ могут работать в условиях тропического климата,

При этом в обозначение типа АВ добавляется буква «Т». Используются также АВ различ-

ных зарубежных фирм.

. Рубильники, выключатели и переключатели

Основные сведения

Рубильники, пакетные выключатели и переключатели – это коммутационные аппа

раты ручного действия, предназначенные для включения, отключения и переключения электрических цепей под нагрузкой ( под током ).

Эти аппараты лишь коммутируют электрические цепи, но не защищают их, напри-

мер, от токов короткого замыкания, токов перегрузки и т.п.

Совмещают в себе функции коммутации и защиты т.н. коммутационно-защитные аппараты ( см. ниже ).

Рубильники

Рубильником называется электрический аппарат с ручным приводом, предназначен

ный для замыкания и размыкания электрических цепей под током.

Устройство рубильника показано на рис. 4.5.

Рис. 4.5. Рубильник:

1 – зажимные пружины; 2 – неподвижный контакт; 3 – рукоятка; 4 – главный контакт; 5 – отрывная пружина; 6 – дугогасительный контакт

Рубильник имеет два медных подвижных контакта: главный 4 и дугогасительный 6, а также один неподвижный - 2. Неподвижный контакт имеет щелевидную форму и снаб

жен нажимными пружинами 1. Контакты 4 и 6 приводятся в движение рукояткой 3 из изоляционного материала.

Для включения рубильника рукоятку поворачивают в напрпавлении протв часовой стрелки. Первым в щель контакта 2 войдет контакт 6, а при дальнейшем движении рукоят

ки до упора – контакт 4. Плотное обжатие контакта 4 внутри контакта 2 обеспечивают нажимные пружины.

При выключении порядок размыкания контактов обратный – сначала из щели вый

дет главный контакт 4, и ток будет протекать через дугогасительный контакт 6. При дальнейшем повороте рукоятки по часовой стрелке пружина 5 будет растягиваться до тех

пор, пока зажимные пружины способны удержать контакт 6 в щели контакта 2.

В конце поворота рукоятки контакт 6 под действием пружины выйдет из щели, при

чем размыкание контактов 2 и 6 происходит практически мгновенно. Тем самым резко ускоряется гашение дуги в воздухе.

Из сказанного следует, что в процессе размыкания контактов обгорает именно дуго

гасительный контакт, а поверхность главного контакта сохраняется целой.

При обгорании дугогасительный контакт легко заменяется.

При токах 600 А и выше вместо медных дугогасительных контактов применяют медно-графитные.

К рубильникам относят рубящие переключатели и разъединители.

Устройство переключателей и разъединители во многом схоже с устройством ру-

бильников.

Рубящий переключатель предназначен для замыкания, размыкания и переключе-

ния электрических цепей под током.

Разъединитель предназначен для замыкания и размыкания электрических цепей без тока.

Разъединители применяют на судах в качестве секционных выключателей на ГРЩ. При помощи этих выключателей шины ГРЩ делятся на несколько участков, которые при нормальной работе электрически через разъединители соединены между собой, образуя единую систему шин.

Если же надо обесточить какой-либо участок ГРЩ, например, для выполнения про

филактических работ, соответствующий разъединитель выключают, предварительно сняв нагрузку с отключаемого участка ( обычно путем отключения автоматов приемников элек

троэнергии ).

Рубящие переключатели применяют в мощных понижающих трансформаторах для плавного регулирования напряжения. С помощью этих переключателей изменяют число витков первичной обмотки трансформатора, в результате изменяется напряжение на вто-

ричной обмотке.

Выключатели и переключатели

Основные сведения

Судовые выключатели и переключатели – это коммутационные аппараты ручного управления, состоящие из собранных в пакеты секций с контактами. Поэтому они получи-

ли название «пакетные».

Пакетные выключатели предназначены для включения и выключения цепей посто

янного и переменного тока.

Пакетные переключатели предназначены для переключения упомянутых цепей.Не-которые типы переключателей, кроме переключения, позволяют включать и выключать питание переключаемых цепей.

Пакетные выключатели и переключатели делятся по таким признакам:

  1. по числу полюсов – на одно-, двух- и трехполюсные;

  2. по способу исполнения корпуса – открытые, защищенные и герметические.

Переключатели выполняются на два или три направления.

Пакетные выключатели и переключатели изготовляются на номинальные токи от

10 А до 400 А

Пакетные выключатели

Пакетный двухполюсный выключатель изображен на рис. 4.6.

Рис. 4.6. Пакетный двухполюсный выключатель:

а – общий вид; б – пакет выключателя; в – схема; 1 – крышка; 2 – рукоятка; 3 – изоляторы; 4 – неподвижные контакты; 5 - фибровые шайбы; 6 – подвижные контакты

Выключатель имеет два пакета ( рис. 4.6, а ), каждый из которых ( рис. 4.6, б ) вклю

чает в себя подвижный латунный контакт 6 в виде лепестка, два неподвижных контакта 4 и корпус 3 из изоляционного материала.

В исходном положении ось подвижного контакта 6 расположена горизонтально, поэтому этот контакт соединяет через себя левый и правый неподвижные контакты 4. Та-

му состоянию контактов соответствует схема на рис. 4.6, в ( нижняя ).

При повороте рукоятки выключателя на 90º по часовой стрелке подвижный кон-

такт устанавливается вертикально, поэтому цепь через контакты 6 и 4 обрывается. Такому

му состоянию контактов соответствует схема на рис. 4.6, в ( верхняя ).

При помощи пружины в верхней части выключателя ( не показана ) контакты раз-

каются мгновенно при подходе рукоятки к положению, близкому к 90º. Такое мгновенное размыкание контактов способствует уменьшению их обгорания.

Пакетные переключатели

Устройство и принцип действия пакетных переключателей те же, что и пакетных выключателей. Отличие состоит в форме подвижных контактов ( рис. 4.7 ).

Как видно из рис.4.7, двухполюсный переключатель на три направления имеет че-

тыре контакта, расположенных в направлении сверху вниз. Каждый контакт выполнен в виде цельного лепестка, состоящего из двух частей в виде линий с поперечными черточ-

ками.

При этом угол раствора линий верхнего и третьего сверху контактов составляет 135º, второго и четвертого - 90º.

Схема на рис. 4.7. позволяет поочередно подключить к выходным проводам С , С одну из трех питающих сетей с выводами соответственно 1Л , 1Л , 2Л , 2Л и 3Л .

В положении контактов, изображенном на рис. 4.7, провод 1Л соединен с прово-

дом С через первый сверху подвижный контакт, провод 1Л с проводом С - через тре-

тий сверху контакт. Иначе говоря нагрузка, подключенная к выводам С , С , подключена к первой сети с выводами 1Л , 1Л . Это положение на корпусе переключателя обозначе-

но как «I».

Рис. 4.7. Принципиальная электрическая схема двухполюсного переключателя на три направления: ):

0, I, II, III – положения рукоятки переключателя; 1Л , 1Л - провода первой питаю-

щей сети; 2Л , 2Л - провода второй питающей сети; 3Л , 3Л - провода третьей питаю-

щей сети; С , С - провода нагрузки

При повороте рукоятки на 90º по часовой стрелке все четыре подвижных контакта также повернутся на этот угол. В результате через второй и четвертый сверху подвижные контакты с выводами С , С соединятся выводы 2Л , 2Л ( положение «II» ).

При повороте рукоятки еще на 90º по часовой стрелке через второй и четвертый сверху подвижные контакты с выводами С , С соединятся выводы 3Л , 3Л ( положе-

ние «III» ).

При установке рукоятки в положение «0» все четыре подвижных контакта размы-

каются.

Пакетные выключатели и переключатели имеют такие свойства:

  1. малые габариты;

  2. удобство в монтаже;

  3. высокая вибро- и ударостойкость;

  4. отсутствует выброс наружу газов и пламени ( т.к. дуга в них гасится в замкну

том пространстве);

  1. быстрый износ контактной системы и приводного механизма.

Например, допустимое число операций «включено-выключено» при токах от 100

до 400 А и напряжении 220 В – не более 10 000

ВОПРОС №18

В соответствии с Правилами Регистра, при нормальной работе основной электро

станции от шин ГЭРЩ по отдельным фидерам должны питаться такие приемники:

.1. электрические приводы рулевых устройств;

.2. электрические приводы якорного устройства;

.3. электрические приводы пожарных насосов;

.4. электрические приводы осушительных насосов;

.5. электрические приводы компрессоров и насосов спринклерной ( пожарной ) системы;

.6. гирокомпас;

.7. щит холодильной установки грузовых трюмов;

.8. электрические приводы агрегатов возбуждения электрической гребной установ

ки;

.9. секционные щиты основного освещения;

.10. щит радиостанции;

.11. щит навигационных приборов;

.12. щит сигнально-отличительных фонарей;

.13. секционные щиты и распределительные устройства питания других потребите

лей ответственного назначения, объединенных по принцип однородности выполняемых функ­ций ( например, грузовые краны, лебедки и др.);

.14. распределительные устройства объединенного пульта управления;

.15. щит станции автоматической сигнализации обнаружения пожара;

.16. электрические приводы механизмов обеспечивающих работу главных механиз­

мов;

.17. щиты электрических приводов грузовых швартовных, шлюпочных и других

уст­ройств вентиляции и нагревательных приборов;

.18. устройства управления винтом регулируемого шага;

.19. зарядные устройства стартерных аккумуляторных батарей и батарей, питаю-

щих ответственные устройства;

.20. щиты питания электрических приводов закрытия водонепроницаемых дверей и

устройств, удерживающих противопожарные двери в открытом состоянии, а также щиты сигнализации о положении и закрытии водонепроницаемых и противопожарных дверей;

.21. щит холодильной установки системы углекислотного тушения низкого давле-

ния;

.22. щиты освещения ангаров и светотехнического оборудования посадочных пло

ща­док для вертолетов;

.23. другие, не перечисленные выше потребители - по требованию Регистра.

Допускается питание потребителей, перечисленных в .4, .6, .10, .11, .12, .15, .16, .18,

.19, .20 от распределительных устройств, указанных в .13 или .14, по отдельным фидерам, имеющим коммутационные и защитные устройства.

Все остальные приемники электроэнергии должны получать питание через вторичные распределительные щиты.

Силовая электрическая сеть предназначена для распреде­ления электроэнергии на участках от ГРЩ до приемников или преобра­зователей электроэнергии. Различают следу

ющие типы силовых элект­рических сетей: фидерную, магистральную и магистрально-фидерную ( рис. 6.1 ).

Рис. 6.1. Принципиальные схемы силовых электрических сетей:

а – фидерная; б – магистральная; в – магистрально-фидерная

В случае использования фидерной сети (рис. 6.1, а) ответственные и наиболее мощ-

ные приемники П1 и П2 получают питание непосредствен­но от ГРЩ по отдельным фиде-

рам, а приемники ПЗ-П8 - от электрорас­пределительных щитов (районного РРЩ1, отсеч-

ных ОРЩ1-ОРЩЗ и групповых ГрРЩ1-ГрРЩ2, соединенных с ГРЩ фидерами.

При использовании магистральной сети (рис. 6.1, б) приемники электроэнергии П1-П6 получают питание от электрораспределитель­ных щитов РЩ1-РЩЗ или магистраль

ных коробок МК1-МКЗ, присоеди­ненных параллельно к магистральным линиям МЛ1-МЛЗ.

На современных судах применяют смешанную, магистрально-фидерную сеть (рис. 6.1, в). В этой сети приемники П1 получают питание по фидерам, а приемники П2-П5 - по магистральным линиям МЛ1 и МЛ2.