Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Модуль 11-14.doc
Скачиваний:
23
Добавлен:
21.09.2019
Размер:
3.88 Mб
Скачать

1. Формы свободной поверхности потока в открытых призматических руслах с прямым уклоном дна

При рассмотрении в модуле 13 равномерного движения жидкости в открытых призматических руслах указывались условия, при соблюдении которых происходит равномерное движение. При нарушении этих условий, например при возведении в русле плотины (рис. 14.2) или перепада (рис. 14.3), движение станет равномерным, при этом глубины будут отличаться от нормальных. В зависимости от гидравлических условий, создающихся при возведении сооружений, и состояния потока глубины могут по длине потока увеличиваться или уменьшаться по мере приближения к сооружению, а скорости при этом будут соответственно уменьшаться или увеличиваться.

Проанализируем формы свободной поверхности потока в открытых призматических руслах при уклонах дна i > 0. Учтем, что след свободной поверхности на продольной вертикальной плоскости будет криволинейным. Эти следы являются кривыми свободной поверхности. Для анализа используем уравнение (12.7), записав его в виде:

(14.1)

где – расходная характеристика при равномерном движении;

К – расходная характеристика при неравномерном движении;

– параметр кинетичности.

Напомним, что =1 при критическом состоянии потока, <1 при спокойном состоянии потока и >1– при бурном состоянии потока.

Равенство числителя уравнения (14.1) нулю соответствует равномерному движению, когда . Если знаменатель стремится к нулю, то есть → 1, то и свободная поверхность скачкообразно повышается (или понижается). В первом случае происходит переход потока из бурного состояния в спокойное – так называемый гидравлический прыжок. Во втором случае образуется водопад (рис. 14.2).

Когда числитель и знаменатель не равны нулю, возможны различные сочетания знаков числителя и знаменателя в (14.1). Как указывалось в модуле 12, при > 0 глубина вдоль потока непрерывно и плавно увеличивается (кривая подпора), а при < 0 непрерывно и плавно уменьшается (кривая спада). Следовательно, имеем две основные формы кривых свободной поверхности в открытых призматических руслах: кривые подпора при > 0 и кривые спада при < 0.

В зависимости от конкретных условий кривые подпора и спада могут иметь различные особенности. Как отмечено в модуле 12, в зависимости от уклона дна равномерное движение при данном расходе Q может происходить:

а) при спокойном состоянии потока ( > ), если < ;

б) при бурном состоянии потока ( < ), если > ;

в) при критическом состоянии потока ( = ), если = .

Д ля анализа условий образования кри­вых свободной поверхности зафиксируем при > 0 зоны в потоке, определяемые и (рис. 14.1), проведем также параллельно линии дна линии нормальной NN и критической КК глубин. Тогда получаются следующие зоны, в которых может располагаться кривая свободной поверхности: зона а – выше линии NN и КК; зона b – между линиями NN и КК; зона с – ниже линии NN и КК.

При = линии NN и КК совмещены и имеются только зоны а и с. При i > 0 возможны восемь случаев образования кривых свободной поверхности.

I. Уклон дна < , то есть при равномерном движении поток находится в спокойном состоянии, > .

Зона а: > > (рис. 14.2). Пусть вследствие возведения плотины имевшееся в бытовых (ненарушенных) условиях равномерное движение с глубиной на участке некоторой длины перешло в неравномерное движение с глубинами > . При этом > , / < 1. Учитываем, что при спокойном состоянии потока < 1, при увеличении h по сравнению с параметр будет еще уменьшаться по сравнению с при равномерном движении, поэтому 1 – > 0.

Формулу (14.1) условно можно представить только знаками числителя и знаменателя, тогда получим

.

Таким образом, имеем расположенную в зоне а кривую подпора вогнутой формы (так как > 0). Проанализируем поведение кривой подпора в верхней (по течению) и в нижней (по течению) частях. При  → получим, что → и → 0, то есть кривая подпора в верхней части асимптотически стремится к линии нормальных глубин NN, то есть пересекается с этой линией лишь в бесконечности. Для крупных сооружений на равнинных реках длина кривой подпора может достигать нескольких сотен километров.

При возрастании h и К числитель и знаменатель (14.1) стремятся к единицы, так как / → 0 и (1 – ) → 1. Тогда → i, то есть кривая подпора в нижней части асимптотически стремится к горизонтальной прямой.

Зона b: > h > (рис. 14.3). В этом случае равномерное движение вследствие создания перепада перешло в неравномерное. Здесь  <  ; / < 1, а < 1. Тогда (14.1) можем представить как:

.

Глубины по длине потока уменьшаются, то есть в рассматриваемом случае имеем кривую спада Id, располагающуюся в зоне b. Эта кривая асимптотически стремится к линии нормальных глубин NN в верхней своей части, так как → , → 0. В нижней части при подходе потока к уступу условия плавной изменяемости, положенные в основу вывода дифференци­ального уравнения, принимаемого здесь в виде (12.8), не выполняются. Кривизна линий тока становится столь большой, что распределение давления по живому сечению значительно отличается от гидростатического.

Кривая спада Ib располагается в зоне b и обращена выпуклостью вверх. Укажем, что в сечении 1–1, то есть выше уступа на расстоянии, равном (2 – 2,5)· , кривая свободной поверхности пересекает линию критических глубин. Строго говоря, применение (15.8) вблизи входа в перепады, то есть на участке между 1–1 и 1'–1', неправильно. При расчете достаточно длинных русл иногда условно считают, что глубина над ребром уступа равна .

Зона с: > >h (рис. 14.4). Поток поступает на участок сопряжения бьефов за водосливной плотиной в бурном состоянии, а в естественных (бытовых) условиях находится в спокойном состоянии. От глубины, образующейся у подножья водослива, ниже по течению движения будет неравномерным. Глубины при этом будут увеличиваться, скорости уменьшаться, образуется кривая подпора .

Действительно, на участке кривой подпора глубины h < , то есть  /  > 1, а > 1. Следовательно, > 0. Кривая подпора располагается в зоне с, так как перейти через линию критических глубин плавным образом кривая свободной поверхности не может, что видно на графике изменения удельной энергии сечения Э (см. рис. 12.3). В рассматриваемом случае h < и уменьшение Э до минимума, а затем последующее увеличение удельной энергии сечения и продолжение движения невозможны.

Кривая свободной поверхности имеет вогнутую форму (выпуклостью обращена вниз) и заканчивается в том сечении, где начинается гидравлический прыжок.

Анализ остальных кривых подпора и спада проведем, помня, что каждая кривая свободной поверхности формируется непрерывно только в границах своей зоны.

II. Уклон дна > , то есть при равномерном движении поток находится в бурном состояния, < .

Зона а: h > > (рис. 14.5). В этом случае > ; / < 1. Так как h > , то в пределах рассматриваемой кривой < 1. Тогда > 0 и кривая подпора IIа расположена в зоне а. Кривая имеет выпуклую форму, в нижней части асимптотически приближается к горизонтальной линии (снизу от этой линии), так как при h → ∞ отношение → i. Кривая подпора IIа образуется ниже гидравлического прыжка по течению, через который происходит переход потока из бурного состояния в спокойное.

Зона b: > h > (рис. 14.6). В этом случае > ; / < 1. При h < параметр > 1. Тогда имеем кривую спада IIb.

При h → кривая асимптотически стремится к линии нормальных глубин NN. Можно считать, что глубина, с которой начинается плавная кривая спада в этой зоне, равна . Ширина канала b на первом и на втором участках канала одинакова. Следовательно, будет одной и той же на обоих участках. Но вблизи перелома дна в верхней части кривой движение только условно считается плавно изменяющимся. Кривая спада IIb имеет вогнутую форму.

Зона с: > > h (рис. 14.7). Здесь > , а > 1. Тогда > 0 и имеем кривую подпора IIс. В данном случае начальная глубина определяется расчетом истечения из-под вертикального плоского затвора. В нижней части кривая IIс асимптотически стремится к линии нормальной глубины, так как при h → отношение → 0. Кривая IIс имеет выпуклую форму.

III. Уклон дна = , то есть при равномерном движении поток находится в критическом состоянии, = . В этом случае имеются лишь две зоны: а и с.

Зона а: h > = (рис. 14.8). В этом случае > ; < 1. Тогда > 0, то есть имеем кривую подпора. Такая кривая образуется при сопряжении потока, находящегося в критическом состоянии, с потоком, находящегося в русле с < (рис. 14.8). В широких руслах кривая подпора в зоне а близка к горизонтальной прямой.

Зона с: h < = (рис. 14.8). В этом случае < ; > 1. Из уравнения (14.1) имеем > 0, и кривая свободной поверхности – кривая подпора IIIс. Такая кривая создается при сопряжении двух потоков, если уклон подводящего русла > , то есть < , а уклон отводящего русла = (рис. 14.8). В широких руслах кривая подпора в зоне с также близка к горизонтальной прямой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]