Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Минералогия гот.doc
Скачиваний:
10
Добавлен:
23.09.2019
Размер:
297.98 Кб
Скачать

12) Факторы, определяющие структуру минерала.

Cтроение кристаллического вещества определяется: 1) относительным числом структурных единиц (атомов, ионов, молекул), удерживаемых в пространстве в упорядоченном состоянии электростатическими силами; 2) соотношением размеров структурных единиц, с чем связаны плотность упаковки и координационное число (т. е. число ближайших анионов, окружающих данный катион); 3) их химическими связями, что также играет существенную роль в пространственном расположении атомов или ионов с образованием различных типов структур; 4) термодинамическими параметрами (температура и давление), при которых вещество существует.

Силы связей, которыми структурные единицы в кристаллах удерживаются в равновесии, в различных типах химических соединений неодинаковы по своей природе. Для подавляющего большинства неорганических кристаллических веществ типична ионная связь, характеризующаяся тем, что силы связи обусловлены электростатическим притяжением противоположно заряженных ионов (например, Na1+ и С11" в кристаллической структуре NaCl). Для многих кристаллических веществ устанавливается направленная ковалентная (гомополярная) связь, выражающаяся в том, что тесно сближенные атомы для образования устойчивых наружных электронных оболочек одну или несколько пар электронов используют совместно (например, в структуре алмаза каждый атом, прочно связанный с четырьмя окружающими атомами, образует четыре ковалентные связи). В кристаллических структурах металлов распространена металлическая связь, обусловленная тем, что «избыточные» в наружной электронной оболочке атомов электроны не теряются, а образуют общий «электронный газ» вокруг положительно заряженного остова структурных единиц. В молекулярных структурах структурные единицы, представленные электрически нейтральными молекулами, удерживаются слабыми вандерваалъсовскими (остаточными) связями (таковы многие органические соединения, а также самородная сера, окись сурьмы и др.). Кроме того, существуют кристаллические вещества, в которых одновременно устанавливаются разные типы связей с преобладанием одной из них.

В ионных соединениях анионы, как относительно крупные структурные единицы, занимают главное пространство, а в кристаллических структурах и при плотной упаковке, естественно, стремятся к правильному расположению в пространстве по закону кубической (трехслойной) или гексагональной (двухслойной) плотнейших упаковок. Катионы же ввиду их меньших размеров размещаются в промежутках между анионами — в тетраэдрических и октаэдрических «пустотах» в зависимости от их относительных размеров. Как известно, число октаэдрических пустот в средах с плотнейшей упаковкой равно числу анионов, а число меньших по размерам тетраэдрических пустот в два раза больше. Однако не все эти пустоты обязательно заполняются катионами, причем заполнение может происходить разными способами: рядами, слоями, кольцами, зигзагообразно и т. п. Тетраэдрической и октаэдрической формой пустот в значительной мере обусловлен тот факт, что координационными числами катионов являются по большей части 4 и 6.

Теория плотнейших упаковок для неорганических соединений подробно разработана Н. В. Беловым и весьма плодотворно применена к расшифровке сложных кристаллических структур многих минералов с выявлением важнейших структурных деталей, обусловливающих те или иные свойства кристаллических веществ.