Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бжд1.docx
Скачиваний:
13
Добавлен:
24.09.2019
Размер:
248.57 Кб
Скачать

Ультразвук

Его источники - генераторы, работающие на частоте от 12 до 22кГц, контрольно-измерительные приборы, некоторые виды технологических процессов (химическое травление металлов). Ультразвук может действовать контактно через жидкую и твердую фазы и через воздушную среду. Ультразвук вызывает в организме человека молекулярный нагрев органов и тканей. Кроме того, под воздействием ультразвука возможно образование пузырьков в жидкостях организма (кавитация). Под воздействием ультразвука возникают нервные расстройства, нарушение состава крови, потеря слуха, повышенная утомляемость. При контактном воздействии на руки возможно не только поражение капиллярных сосудов, но и разрушение костной ткани.

Санитарными правилами и нормами СН.2.2.4/2.1.8.562-96 устанавливаются предельно допустимые уровни(ПДУ) логарифмического уровня звукового давления для 1/3 октавных полос, отдельно при контактном воздействии и через воздушную среду.

20

Его источники - оптические квантовые генераторы. Лазерное излучение обладает высокой мощностью и направленностью излучения. Различают прямое, рассеянное и отраженное лазерное излучение. При работе лазеров возможно воздействие целого ряда неблагоприятных факторов. При прямом лазерном излучении возможно воздействие импульсных световых вспышек, ультрафиолетового излучения, электромагнитных полей радиочастот, ионизирующих излучений, шума, озона (О3). При воздействии рассеянного и отраженного излучений возникает рассеянное лазерное излучение, импульсный шум, вредные примеси воздуха и электромагнитные поля радиочастот. Лазерное излучение оказывает тепловое воздействие, вызывая ожоги всех 4 степеней, вплоть до обугливания кожи и ее деструкции. Лазерное излучение оказывает ударное действие, то есть воспринимается как точечный удар, из-за очень краткой длительности импульса ( продолжительность импульса 10-7-10-10с) и высокой скорости нагрева тканей, в которых резко повышается давление.

По ГОСТ 12.1.040-83 в зависимости от степени опасности для персонала все лазеры делятся на 4 класса:

– безопасное (выходное излучение не опасно для глаз);

– малоопасное ( опасно для глаз прямое или зеркально отраженное излучение);

– среднеопасное (опасны для глаз все виды излучения, на удаление 10 см от источника. Для кожи опасно прямое или зеркально отраженное излучение);

– высокоопасное ( опасно диффузное- отраженное излучение на удалении 10 см).

21

Ионизирующее излучение

План: 1) источники и виды ионизирующего излучения; 2) характеристики; 3) воздействие на организм человека и заболевания.

Пусковой механизм- процессы ионизации и возбуждения атомов и молекул в тканях, диссоциация сложных молекул в результате разрыва химических связей- прямое действие радиации. Существенную роль играют радиационно-химические изменения, обусловленные продуктами радиолиза воды. Свободные радикалы водорода и гидроксильной группы, обладая высокой активностью, вступают в химические реакции с молекулами белка, ферментов и другими элементами биоткани, что приводит к нарушению биохимических процессов в организме. В результате нарушаются обменные процессы. Индуцированные свободные радикалы - химические реакции развиваются с большим выходом. Это особенность действия ионизирующего излучения на биологические объекты. Ионизирующая радиация вызывает болезни: детерминированные пороговые эффекты ( лучевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие) и стохастические ( вероятностные) беспороговые эффекты ( злокачественные опухоли, лейкозы, наследственные болезни). Острое поражение возникает при дозе выше 0,25 Гр. При дозе 0,25..0,5 Гр наблюдается изменение крови. В интервале 0,5..1,5 Гр возникает чувство усталости. При дозе 1,5..2,0 Гр наблюдается легкая форма острой лучевой болезни- лимфония, которая в 30..50 случаях вызывает рвоту в первые сутки после облучения. При дозе 4,0..6,0 Гр имеет место тяжелая форма, которая может закончиться смертью. Наиболее часто возникающие диагнозы- симптомы нервной системы, локальные поражения кожи, поражение хрусталика, пневмосклероз.

Гигиеническая регламентация ионизирующего излучения осуществляется Нормами Радиационной безопасности НРБ-96, Гигиеническими нормативами ГН 2.6.1.054-96, по которым выделяют следующие категории лиц:

- персонал, то есть лица работающие с техногенными источниками;

- все население.

Эквивалентная доза ионизирующего излучения рассчитывается по формуле:

, (8)

где - взвешивающий коэффициент;

- поглощающая доза в органе или ткани.

Эффективная доза ионизирующего излучения измеряется в (Зв - Зиверт).

22

Проходя через тело человека электрический ток оказывает следующее воздействие: биологическое, заключающиеся в раздражении, возбуждении тканей организма, сокращение мышц (сердца и легких), электролитическое (разложение крови и других жидкостей), термическое, нагрев внутренних органов при ожоге кожи и механическое действие (травмирование поверхности кожи). Различают местные и общие электромагнитные травмы. Местные – электроофтальмия, металлизация кожи металлом электрода (алюминий Al), электрические знаки, ожоги и т.д. Общие электротравмы – электроудары, результат биологического действия электрического тока.

Факторы, влияющие на исход поражения человека электрическим током:

Сопротивление тела человека ,

, где

- сопротивление кожи; - сопротивление внутренних органов.

Сопротивление тела человека зависит от параметров окружающей среды (температуры и относительной влажности воздуха), от напряжения, приложенного к телу человека, от индивидуальных свойств.

Сила тока, проходящая через тело человека:

.

При частоте и силе тока ощущается слабый зуд и легкое покалывание в месте касания с электродом. Такой ток называется ощутимым.

Ток вызывает болезненные сокращения мышц, препятствующие самостоятельному освобождению от электродов.

Ток с силой называется неотпускающим. Он вызывает фибрилляцию - хаотичное сокращение мышц отдельных волокон сердца. Вызывает остановку сердца и дыхания.

Ток с силой вызывает немедленный паралич дыхания, остановку сердца, тяжелые ожоги.

Время воздействия электрическим током на организм человека.

С течением времени уменьшается сопротивление тела человека. Следовательно, увеличивается сила тока проходящая через него. Кроме того, опасно совпадение времени воздействия электрическим током с фазой Т кардиоцикла, которая соответствует максимальному сокращению желудочков сердца и переходу их в расслабленное состояние.

Род и частота тока.

При одном и том же значении силы тока переменный ток более опасен, чем постоянный. Например, ток ощутимый переменный составляет . Для постоянного тока - это ток . С увеличением частоты от 0 до 50-60Гц увеличивается вероятность электроудара. С дальнейшим увеличением частоты она уменьшается. При частоте 300-400Гц наиболее вероятными являются элекроожоги.

Путь прохождения тока по телу человека.

Наиболее опасным считается путь, проходящий через жизненно важные органы: сердце, легкие, головной и спинной мозг. Например, путь голова - руки, голова - ноги. Следующий путь рука-рука, правая рука - ноги, нога-нога, когда человек попадает под напряжение шага.

Индивидуальные свойства человека.

Наличие заболеваний сердечно-сосудистой, дыхательной, эндокринной систем. Степень готовности человека к работе на электроустановках и другие (утомление на рабочем месте).

10

Вредным называется вещество, которое при контакте с организ­мом человека может вызывать травмы, заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующих поколений.

Химические вещества по сфере применения классифицируют на:

– промышленные яды, используемые в производстве: напри­мер, органические растворители (дихлорэтан), топливо (пропан, бу­тан), красители (анилин);

– ядохимикаты, используемые в сельском хозяйстве: пестициды (гексахлоран), инсектициды (карбофос) и др.;

– лекарственные средства;

– бытовые химикаты, используемые в виде пищевых добавок (уксусная кислота), средства санитарии, личной гигиены, косметики и т. д.;

– биологические растительные и животные яды, которые содер­жатся в растениях и грибах (аконит, цикута), у животных и насекомых (змей, пчел, скорпионов);

– отравляющие вещества (ОВ): зарин, иприт, фосген и др.

В организм промышленные химические вещества могут прони­кать через органы дыхания, желудочно-кишечный тракт и неповреж­денную кожу. Однако основным путем поступления являются легкие. Помимо острых и хронических профессиональных интоксикаций промышленные яды могут быть причиной понижения устойчивости организма и повышенной общей заболеваемости.

По избирательной токсичности выделяют яды:

– сердечные с преимущественным кардиотоксическим дейст­вием; к этой группе относят многие лекарственные препараты, расти­тельные яды, соли металлов (бария, калия, кобальта, кадмия);

– нервные, вызывающие нарушение преимущественно психи­ческой активности (угарный газ, фосфорорганические соединения, алкоголь и его суррогаты, наркотики, снотворные лекарственные препараты и др.);

– печеночные, среди которых особо следует выделить хлориро­ванные углеводороды, ядовитые грибы, фенолы и альдегиды;

– почечные - соединения тяжелых металлов этиленгликоль, щавелевая кислота;

– кровяные - анилин и его производные, нитриты, мышьяко­вистый водород;

– легочные - оксиды азота, озон, фосген и др.

Классификация веществ по характеру воздействия на организм и об­щие требования безопасности регламентируются ГОСТ 12.0.003—74.

Согласно ГОСТ, вещества подразделяются на:

– токсические, вызы­вающие отравление всего организма или поражающие отдельные системы (ЦНС, кроветворения), вызывающие патологические изме­нения печени, почек;

– раздражающие - вызывающие раздражение слизистых оболочек дыхательных путей, глаз, легких, кожных покро­вов;

– сенсибилизирующие, действующие как аллергены (формальде­гид, растворители, лаки на основе нитро- и нитрозосоединений и др.);

–мутагенные, приводящие к нарушению генетического кода, из­менению наследственной информации (свинец, марганец, радиоак­тивные изотопы и др.);

– канцерогенные, вызывающие, как правило, злокачественные новообразования (циклические амины, ароматиче­ские углеводороды, хром, никель, асбест и др.);

– влияющие на репро­дуктивную (детородную) функцию (ртуть, свинец, стирол, радиоак­тивные изотопы и др.).

Распределение ядови­тых веществ в организме подчиняется определенным закономерностям. Перво­начально происходит дина­мическое распределение ве­щества в соответствии с ин­тенсивностью кровообра­щения. Затем основную роль начинает играть сорбционная способность тканей. Существуют три главных бассейна, связанных с рас­пределением вредных ве­ществ: внеклеточная жид­кость (14 л для человека массой 70 кг), внутриклеточная жидкость (28 л) и жировая ткань. Поэтому распределение веществ зависит от таких физико-химических свойств, как водорастворимость, жирорастворимость и способность к диссоциации. Для ряда металлов (сереб­ра, марганца, хрома, ванадия, кадмия и др.) характерно быстрое выве­дение из крови и накопление в печени и почках.

Сенсибилизация — состояние организма, при котором повторное воздействие вещества вызывает больший эффект, чем предыдущее. Эффект сенсибилизации связан с образованием в крови и других внутренних средах измененных и ставших чужеродными для организ­ма белковых молекул, индуцирующих формирование антител. К веществам, вызываю­щим сенсибилизацию, относятся бериллий и его соединения, карбонилы никеля, железа, кобальта, соединения ванадия и т. д.

При повторяющемся воздействии вредных веществ на организм можно наблюдать и ослабление эффектов вследствие привыкания. Для развития привыкания к хроническому воздействию яда необходимо, чтобы его концентрация (доза) была достаточной для формирова­ния ответной приспособительной реакции и нечрезмерной, приводя­щей к быстрому и серьезному повреждению организма. При оцен­ке развития привыкания к токсическому воздействию надо учиты­вать возможное развитие повышенной устойчивости к одним ве­ществам после воздействия других. Это явление называют толе­рантностью.

11

Отравления протекают в острой, подострой и хронической фор­мах. Острые отравления чаще бывают групповыми и происходят в результате аварий, поломок оборудования и грубых нарушений тре­бований безопасности труда; они характеризуются кратковременно­стью действия токсичных веществ, не более чем в течение одной сме­ны; поступлением в организм вредного вещества в относительно больших количествах — при высоких концентрациях в воздухе; ошибочном приеме внутрь; сильном загрязнении кожных покровов. На­пример, чрезвычайно быстрое отравление может наступить при воз­действии паров бензина, сероводорода высоких концентраций и за­кончиться гибелью от паралича дыхательного центра, если постра­давшего сразу же не вынести на свежий воздух. Оксиды азота вследствие общетоксического действия в тяжелых случаях могут вы­звать развитие комы, судороги, резкое падение артериального давле­ния.

Хронические отравления возникают постепенно, при длительном поступлении яда в организм в относительно небольших количествах. Отравления развиваются вследствие накопления массы вредного ве­щества в организме (материальной кумуляции) или вызываемых ими нарушений в организме (функциональная кумуляция). Хронические отравления органов дыхания могут быть следствием перенесенной однократной или нескольких повторных острых интоксикаций. К ядам, вызывающим хронические отравления в результате только функциональной кумуляции, относятся хлорированные углеводоро­ды, бензол, бензины и др.

Комбинированное действие - это одновременное или последовательное действие на организм несколь­ких ядов при одном и том же пути поступления. Различают несколько типов комбинированного действия ядов в зависимости от эффектов токсичности: аддитивного, потенцированного, антагонистического и независимого действия.

Аддитивное действие — это суммарный эффект смеси, равный сумме эффектов действующих компонентов. Аддитивность характер­на для веществ однонаправленного действия, когда компоненты сме­си оказывают влияние на одни и те же системы организма, причем при количественно одинаковой замене компонентов друг другом ток­сичность смеси не меняется. Примером аддитивности является наркотическое действие смеси углеводородов (бензола и изопропилбензола).

При потенцированном действии (синергизме) компоненты смеси действуют так, что одно вещество усиливает действие другого. Эф­фект комбинированного действия при синергизме выше, больше ад­дитивного, и это учитывается при анализе гигиенической ситуации в конкретных производственных условиях. Потенцирование отмечает­ся при совместном действии диоксида серы и хлора; алкоголь повы­шает опасность отравления анилином, ртутью и некоторыми другими промышленными ядами. Явление потенцирования возможно только» в случае острого отравления.

Антагонистическое действие - эффект комбинированного дей­ствия менее ожидаемого. Компоненты смеси действуют так, что одно вещество ослабляет действие другого, эффект — менее аддитивного. Примером может служит антидотное (обезвреживающее) взаимодей­ствие между эзерином и атропином.

При независимом действии комбинированный эффект не отли­чается от изолированного действия каждого яда в отдельности. Пре­обладает эффект наиболее токсичного вещества. Комбинации ве­ществ с независимым действием встречаются достаточно часто, на­пример бензол и раздражающие газы, смесь продуктов сгорания и пыли.

Для ограничения неблагоприятного воздействия вредных ве­ществ применяют гигиеническое нормирование их содержания в раз­личных средах. В связи с тем, что требование полного отсутствия про­мышленных ядов в зоне дыхания работающих часто невыполнимо, особую значимость приобретает гигиеническая регламентация содер­жания вредных веществ в воздухе рабочей зоны (ГОСТ 12.1.005—88 и ГН 2.2.5.686—98). Такая регламентация в настоящее время проводит­ся в три этапа: 1) обоснование ориентировочного безопасного уровня воздействия (ОБУВ); (ГН 2.2.5.687-98); 2) обоснование ПДК; 3) кор­ректирование ПДК с учетом условий труда работающих и состояния их здоровья. Установлению ПДК может предшествовать обоснование ОБУВ в воздухе рабочей зоны, атмосфере населенных мест, в воде, почве.

Ориентировочный безопасный уровень воздействия устанавлива­ют временно, на период, предшествующий проектированию произ­водства. Значение ОБУВ определяется путем расчета по физико-хи­мическим свойствам или путем интерполяций и экстраполяции в го­мологических рядах (близких по строению) соединений или по пока­зателям острой токсичности. ОБУВ должны пересматриваться через два года после их утверждения.

Предельно допустимая концентрация вредных веществ в воздухе рабочей зоны — это концентрации, которые при ежедневной (кроме выходных дней) работе в продолжение 8 ч или при другой длительно­сти, но не превышающей 41 ч в неделю, в течение всего рабочего стажа не могут вызывать заболеваний или отклонений в состояний здо­ровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего или по­следующего поколений.

16

Инфракрасное излучение оказывает в основном тепловое воздействие, что может привести к биохимическим сдвигам, уменьшению кислородной насыщаемости крови, увеличению венозного давления, уменьшению кровотока, нарушению сердечно-сосудистой, нервной системы.

Инфракрасное излучение делится на коротковолновое с длиной волны 0.76…1.5 мкм и длинноволновое с длиной волны более 1.5 мкм. Коротковолновое излучение глубоко проникает в ткани и разогревает их, вызывая быструю утомляемость. Длинноволновые лучи далеко не проходят и поглощаются в эпидермисе кожи. Они могут вызвать ожог кожи и глаз. Характеристикой инфракрасного излучения является интенсивность теплового излучения - мощность лучистого потока, приходящаяся на единицу облучаемой поверхности. Интенсивность величиной не вызывает ничего; - ожоги. При частота пульса усиливается на 5-7 ударов в минуту.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]