Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы получения тонких пленок.doc
Скачиваний:
47
Добавлен:
27.09.2019
Размер:
109.57 Кб
Скачать

Ионно-лучевое распыление.

В данном методе для распыления используется пучок частиц высокой энергии. Для создания таких потоков частиц с контролируемой энергией разработаны системы ионных пушек (рис.)

Технология ионно-лучевого распыления заключается в бомбардировке мишени заданного состава пучком ионов с энергией до 5000 эВ с последующим осаждением распыленного материала на подложку. При этом стехиометрия формируемого покрытия идентична мишени. Эта современная технология предназначена для нанесения прецизионных нанослойных покрытий с высокой плотностью и низкой шероховатостью

.

Дополнительными преимуществами технологии ионно-лучевого распыления являются возможность проведения реактивных и нереактивных процессов в одной камере без переналадки (например, из мишени Si можно получать покрытия Si, SiO2, Si3N4), возможность нанесения покрытий на термочувствительные подложки (пластики и т. д.) (так как процесс нанесения характеризуется низкими температурами до 900С). Кроме того возможен перенос нанокомпозитных материалов мишени на подложку без изменения их свойств.

В большинстве случаев ионно-лучевое распыление проводится при энергии ионов 100―1000 эВ, что обеспечивает поддержание низкой температуры подложки и ограничивает ее радиационное повреждение. При энергии свыше 1000 кэВ ионы проникают так глубоко, что лишь небольшое количество поверхностных атомов распыляется, коэффициент распыления уменьшается. Распыление, таким образом, является процессом, в котором увеличение энергии ионов неэффективно. Коэффициент распыления материала зависит от типа бомбардирующих его ионов. Атомная масса падающего иона является одним из факторов, определяющих величину импульса, которая может быть передана атомам подложки. Инертный газ аргон наиболее широко используется в ионно-лучевом распылении, поскольку обеспечивает высокий коэффициент распыления, дешев и легко доступен. Коэффициент распыления зависит не только от природы бомбардирующих ионов, но и от природы материала мишени, причем определяется положением распыляемого элемента в периодической системе и обратно пропорционален теплоте сублимации. Часто используемые в микроэлектронике материалы׃ палладий, платина, золото – имеют сравнительно высокий коэффициент распыления, тогда как углерод, титан и тантал – низкий.

Есть установки ионно-лучевого распыления содержащие два ионных источника: источник ионов с холодным полым катодом на основе самостоятельного двухкаскадного разряда низкого давления для распыления мишеней и источник ионов Кауфмана холловского типа с открытым торцом для создания ассистирующего потока низкоэнергетических ионов. Основные компоненты установки и их взаимное расположение внутри вакуумной камеры схематично показаны на рис. 4.

Ионно-лучевое распыление является методом анизотропного распыления с очень высоким разрешением, который обеспечивает хорошее качество покрытий, воспроизводимость и вносит минимальное загрязнение.

Молекулярно-лучевая эпитаксия

Молекулярно-лучевая эпитаксия - эпитаксиальный рост в условиях сверхвысокого вакуума. Этот метод позволяет выращивать гетероструктуры заданной толщины с моноатомно гладкими гетерограницами и с заданным профилем легирования. Для процесса эпитаксии необходимы специальные хорошо очищенные подложки с атомарногладкой поверхностью. В основе метода лежит осаждение испаренного в молекулярном источнике вещества на кристаллическую подложку. Источник, в котором формируются молекулярные и атомные пучки, представляет собой камеру, соединённую с высоковакуумным объёмом при помощи отверстия в тонкой стенке или узкого капилляра в толстой стенке. Исследуемые молекулы или атомы вводятся в камеру источника в виде газа или пара при давлении несколько мм рт. ст. Для увеличения интенсивности пучков применяют источники с несколькими отверстиями или капиллярами, расстояние между которыми должно быть несколько больше их диаметра. Соударения с частицами остаточного газа разрушают молекулярные и атомные пучки, тем быстрее, чем хуже вакуум. Длина молекулярных и атомных пучков в идеальном вакууме была бы чрезвычайно велика, т. к. возможны были бы только соударения «догона». Несмотря на достаточно простую идею, реализация данной технологии требует чрезвычайно сложных технических решений. (рис) .

Основные требования к установке эпитаксии следующие:

  • В рабочей камере установки необходимо поддерживать сверхвысокий вакуум (около 10−8 Па).

  • Чистота испаряемых материалов должна достигать 99,999999 %.

  • Необходим молекулярный источник, способный испарять тугоплавкие вещества (такие как металлы) с возможностью регулировки плотности потока вещества.

Особенностью эпитаксии является невысокая скорость роста пленки (обычно менее 1000 нм в минуту).