Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы. разделы 1,3,5,6,7.docx
Скачиваний:
80
Добавлен:
28.09.2019
Размер:
1.23 Mб
Скачать

57) Центры прилипания.

Время жизни электронно дырочной пары при рекомбинации через примесный центр определяется в основном временем жизни неосновных носителей заряда (в данном случае дырок). Это связано с тем, что захваченный донором электрон находится достаточно долго на центре примеси пока не будет захвачена дырка (дырка захватывается медленнее, чем электрон). Эффективность рекомбинации неравновесных носителей заряда через примесные центры зависит от не только от вероятности захватами электронов и дырок, но и от вероятности обратных тепловых переходов 1', 2'.

Если у примесных центров вероятность обратных тепловых переходов значительна, то они называются центрами прилипания (это не рекомбинационные центры). Примесные центры, для которых вероятность обратных тепловых переходов незначительна, называются рекомбинационными центрами или ловушками.

58) Оже-рекомбинация.

Оже-рекомбинация — механизм рекомбинации в полупроводниках, при котором лишняя энергия передаётся другому электронному возбуждению.

При рекомбинации электрона проводимости и дырки, электрон переходит из зоны проводимости в валентную зону. При этом он теряет энергию, которая приблизительно равняется ширине запрещённой зоны. Эта энергия должна передаться какой-нибудь другой частице или квазичастице: фотону, фонону или другому электрону. Последний из перечисленных процессов называется оже-рекомбинацией по аналогии с эффектом Оже. Электрон, который получает выделенную энергию, переходит на высоковозбуждённый уровень в зоне проводимости. Это высоковозбуждённое состояние потом термализуется, постепенно отдавая энергию колебаниям кристаллической решётки.

Оже-рекомбинация существенна при высокой плотности носителей заряда в полупроводнике, поскольку требует столкновения трёх квазичастиц. Одновременная высокая концентрация электронов проводимости и дырок возможна при интенсивном возбуждении полупроводника светом.

59) Схема энергетических зон в контакте металл-полупроводник.

Мы помним, что если в твердом теле имеются свободные электроны, то они движутся, совершая хаотическое тепловое движение. Самые быстрые (обладающие наибольшей энергией) электроны могут покинуть пределы твердого тела, затратив часть своей энергии на совершение работы выхода A. Допустим, что в паре "металл-полупроводник" работа выхода для металла выше, чем для полупроводника AМ > AП. В этом случае электроны легче переходят из полупроводника в металл, чем наоборот. Тогда часть электронов, перейдет из полупроводника в металл. В приграничном слое полупроводника возникнет область пространственного заряда, обедненная свободными носителями заряда (электронами) и между контактирующими телами появится контактная разность потенциалов (около 0,2...0,4В). Хотя разность потенциалов и невелика, но она приложена к пограничному слою толщиной около 10-7 м, что приводит к появлению контактного электрического поля, направленного от полупроводника к металлу и достаточно сильного (напряженность E=0,2В/10-7м=2.106м), чтобы препятствовать дальнейшему переходу электронов в металл. Теперь для того, чтобы осуществить такой переход электрон должен иметь дополнительную энергию. На энергетической диаграмме такой ситуации соответствует изгиб зон вверх (в сторону больших энергий), равный разности работ выхода AМ-AП и называемый потенциальным барьером.