Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Белки.docx
Скачиваний:
109
Добавлен:
29.09.2019
Размер:
52.28 Кб
Скачать

17. Мозаичность третичной структуры белков. Понятие о фолдинге, роль шаперонов в этом процессе. Лабильность пространственной структуры белков и их денатурация.

Процесс сворачивания полипептидной цепи в правильную пространственную структуру получил название "фолдинг белков". Фолдинг протекает при участии специальной группы белков, которые называют "шапероны".

При синтезе белков N-концевая область полипептида синтезируются раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют шапероны (Ш-70)

18. Конформационные перестройки молекул белков как основа их функционирования.

19. Четверичная структура белков. Протомеры и субъединицы. Зависимость биологической активности от четверичной структуры белков.

Под четвертичной структурой понимают объединение отдельных полипептидных цепей с третичной структурой в функционально активную молекулу белка. Каждая отдельная полипептидная цепь называется протомером и чаще не обладает биологической активностью. Олигомерные белки содержат от 2(гексокиназа)до 312(пируватдегидрогеназа)пртомеров. Специфичность связывания протомеров за счет зависит от совокупности радикалов третичной структуры и определяется комплементарностью протомеров.

Комплементарность-пространственное и химическое соответствие взаимодействующих поверхностей.

В молекуле белка может быть несколько протомеров, которые при объединении образуют олигомер или мультимер.

Для белков с четвертичной структурой характерно понятие субъединицы.

Субъединица – это функционально активная часть молекулы белка.

Примером белка с четвертичной структурой является гемоглобин, состоящий из 4 протомеров: 2 α и 2 β - цепей.

Взаимодействие полипептидных цепей при формировании олигомера происходит за счет полярных групп аминокислотных остатков. Между полярными группами образуется ионная, водородные связи, гидрофобные взаимодействия.

Активные центры возникают при образовании четвертичной структуры.

В молекуле белка имеются прочные (ковалентные) связи, а также слабые, что обеспечивает с одной стороны стабильность молекулы, а с другой лабильность.

20. Особенности строения и функционирования олигомерных белков на примере гемоглобина. Кооперативные изменения конформации протомеров на примере гемоглобина.

Гемоглобины - родственные белки, находящиеся в эритроцитах человека и позвоночных животных. Эти белки выполняют 2 важные функции:

-перенос О2 из легких к периферическим тканям;

-участие в переносе СО2 и протоков из периферических тканей в легкие для последующего выведения из организма.

Изменение конформации (а следовательно и функциональных свойств) всех протомеров олигомерного белка при присоединении лиганда только к одному из них носит название кооперативных изменений конформации протомеров.

21. Доменная структура и ее роль в функционировании белков

1. Длинные полипептидные цепи часто складываются в несколько компактных, относительно независимых областей. Они имеют самостоятельную третичную структуру, напоминающую таковую глобулярных белков, и называются доменами.

Благодаря доменной структуре белков легче формируется их трехмерная структура.

2. Центры связывания белка с лигандом часто располагаются между доменами (например, центр связывания трипсина с его лигандом - пищевым белком). Разные домены в белке могут перемещаться относительно друг друга при взаимодействии с лигандом (например, в молекуле гексокиназы).

В некоторых белках домены выполняют самостоятельные функции, связываясь с различными лигандами. Такие белки называются многофункциональными белками.

Трипсин — протеолитический фермент, участвующий в гидролизе пептидных связей в молекулах пищевых белков в кишечнике. В молекуле трипсина имеется 2 домена, разделенных бороздкой. На внутренней поверхности этих доменов, формирующих бороздку, располагаются радикалы Сер j 77, Гис4о и Асп85, участвующих в связывании фермента с пептидами и их гидролизе.

Гексокиназа - фермент, катализирующий фосфори-лирование глюкозы с помощью АТФ. Активный центр располагается в расщелине между 2 доменами. При связывании гексокиназы с глюкозой окружающие ее домены смыкаются и субстрат оказывается в «ловушке», где протекает фосфорилирование.

3. Лигандами, взаимодействующими с трехмерной структурой пептидной цепи, могут быть не только низкомолекулярные органические и неорганические молекулы, но и макромолекулы — ДНК (см. рассмотренные выше примеры с ДНК-связывающими белками), РНК, полисахариды, белки. В этих случаях белок узнает определенный участок лиганда, соразмерный и комплементарный центру связывания.

22. Шапероны – семейство защитных белков. Роль шаперонов в процессах жизнедеятельности.

Шапероны — класс белков, главная функция которых состоит в восстановлении правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов. Термин «молекулярный шаперон» впервые был использован в 1978 году в работе Рона Ласкей, профессора эмбриологии из Кембриджского Университета[1] при описании ядерного белка нуклеоплазмина, способного предотвращать агрегирование белков-гистонов с ДНК при образовании нуклеосом. Шапероны есть во всех живых организмах, и механизм их действия, нековалентное присоединение к белкам и их «расплетение» с использованием энергии гидролиза АТФ также консервативен.Функции

Многие шапероны являются белками теплового шока, то есть белками, экспрессия которых начинается в ответ на рост температуры или другие клеточные стрессы.[2] Тепло сильно влияет на фолдинг белка, а некоторые шапероны участвуют в исправлении потенциального вреда, который возникает из-за неправильного сворачивания белков. Другие шапероны участвуют в фолдинге только что созданных белков в тот момент, когда они «вытягиваются» из рибосомы. И хотя большинство только что синтезированных белков могут сворачиваться и при отсутствии шаперонов, некоторому меньшинству обязательно требуется их присутствие.

Другие типы шаперонов участвуют в транспортировке веществ сквозь мембраны, например в митохондриях и эндоплазматическом ретикулуме у эукариот.

Продолжают обнаруживаться новые функции шаперонов, например, участие в разрушении белка, деятельности бактериального адгезина и в реакциях на заболевания, связанные с агрегацией белков.