Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по петрографии.doc
Скачиваний:
31
Добавлен:
14.11.2019
Размер:
981.5 Кб
Скачать

Состав вулканических газов действующего базальтового вулкана Килауэуа,

Гавайские острова, (объем %)

Компонент

Содержание

Компонент

Содержание

H2O

79,31

SO2

6,48

CO2

11,61

S2

0,24

CO

0,37

SO3

-

H2

0,58

H2S

-

N2

1,29

Cl2

0,05

Ar

0,04

HCl

-

Вулканы обычно интенсивно выделяют флюидную фазу («курятся») во время дождливых сезонов.

Структурное положение флюидной фазы летучих компонентов можно показать на примере кислорода, который может быть в трех формах:

  • мостиковой, в кремнекислородных полианионах;

  • немостиковой, в промежуточном положении между Si и Ме (=Si–O-...Ме+);

  • свободные ионы О2-, ассоциирующие с ионами Ме.

Вода и другие летучие компоненты находятся в магме в растворенном молекулярно-дисперсном состоянии. При температурах 650–700оС – в диссоциированном, а около 1200оС в полностью диссоциированном состоянии. Количество растворенной в магме воды зависит от давления и обычно не превышает несколько весовых процентов.

Таблица 2

Растворимость Н2О в расплаве гранита, % (масс.)

ТоС

Р (атм)

100

1000

2000

1000

1,0

3,6

5,0

1200

0,8

3,3

4,4

Максимальное количество воды, которое может быть растворено в магме, достигает 20% при давлении около 10 тысяч атмосфер.

Флюидная фаза и летучие компоненты являются главными переносчиками химических компонентов из магм и, в частности, компонентов месторождений полезных ископаемых. Если в силикатном расплаве были растворены летучие компоненты, то в процессе кристаллизации они будут отделяться от расплава, т. к. в отличие от силикатных расплавов растворимость летучих компонентов в твердом кристаллическом веществе ничтожна. Кристаллы как бы вытесняют газовую фазу из магмы, и процесс напоминает кипение. В отличие от обычного кипения процесс идет не при притоке тепла в систему, а, наоборот, при отдаче системой тепла и носит название ретроградного кипения или магматической дистилляции. Таким образом, состав горных пород отражает состав магм, исключая летучие компоненты, т. е. (по В. А. Николаеву и В. В. Доливо-Добровольскому) газовую фазу. Другими словами, состав горных пород не эквивалентен составу магм, хотя некоторая доля летучих компонентов входит в состав кристаллизующихся минералов (в мусковит, биотит, роговую обманку).

Неэквивалентность составов магм, вулканических и плутонических горных пород.

Результатом магматической дистилляции является неэквивалентность химического состава магм интрузивных и эффузивных пород, на что еще в своё время указывал В. И. Вернадский. Считается, что в быстро закристаллизованных эффузивных породах, как бы, “законсервировалась” та часть летучих компонентов и растворенных в ней соединений, которая из медленно кристаллизовавшихся интрузивных пород удалялась в процессе магматической дистилляции и при благоприятных геологических условиях могла образовывать месторождения. По разнице содержаний химических элементов в быстро и медленно закристаллизованных породах можно судить о способности, а по коэффициенту отделения даже о степени и количестве этих элементов, уходящих из магмы во флюидную фазу, а также металлогенической специализации данного интрузивного массива. Отсюда появляется принципиальная возможность оценки рудоносности магм. Подсчет способности химических элементов переходить из расплава в газово-жидкую фазу с помощью коэффициента отделения где коэффициент отделения, и - концентрации химических элементов в эффузивной и интрузивной породе. Высокие значения величин коэффициентов отделения химических элементов свидетельствуют о его больших потенциальных возможностях рудообразования в ходе магматической дистилляции. Разные значения этих величин для разных элементов свидетельствуют об их дифференцированной способности переходить из расплава во флюидную фазу.