Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
информатика.docx
Скачиваний:
77
Добавлен:
21.05.2015
Размер:
2.23 Mб
Скачать

Эталонная модель

Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей. В начале 1980 гг. Международная Организация по Стандартизации (ISO) и Международный Консультативный Комитет по Телеграфии и Телефонии (МККТТ)  признали необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. В тесном сотрудничестве была разработана  эталонная модель "Взаимодействие Открытых Систем" (ЭМВОС). Эта модель была описана в рекомендациях Х.200 (МККТТ) и ISO 7498  (ISO). Соответствие ЭМВОС МККТТ и ИСО.

ЭМВОС быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Несмотря на то, что были разработаны другие архитектурные модели (в основном патентованные), большинство поставщиков сетей, когда им необходимо предоставить обучающую информацию пользователям поставляемых ими изделий, ссылаются на них как на изделия для сети, соответствующей эталонной модели. И действительно, эта модель является самым лучшим средством, имеющемся в распоряжении тех, кто надеется изучить технологию сетей. Дальнейшее описание ЭМВОС будет базироваться на модели ISO.

Иерарахическая связь.

Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию.

Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней. Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением.

Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к.информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули".

В качесте примера связи типа OSI предположим, что Система А на Рис. 1-1 имеет информацию для отправки в Систему В. Прикладная программа Системы А сообщается с Уровнем 7 Системы А (верхний уровень), который сообщается с Уровнем 6 Системы А, который в свою очередь сообщается с Уровнем 5 Системы А, и т.д. до Уровня 1 Системы А. Задача Уровня 1 - отдавать (а также забирать) информацию в физическую среду сети. После того, как информация проходит через физическую среду сети и поглащается Системой В, она поднимается через слои Системы В в обратном порядке (сначала Уровень 1 , затем Уровень 2 и т.д.), пока она наконец не достигнет прикладную программу Системы В.

Хотя каждый из уровней Системы А может сообщаться со смежными уровнями этой системы, их главной задачей является сообщение с соответствующими уровнями Системы В. Т.е. главной задачей Уровня 1 Системы А является связь с Уровнем 1 Системы В; Уровень 2 Системы А сообщается с Уровнем 2 Системы В и т.д. Это необходимо потому, что каждый уровень Системы имеет свои определенные задачи, которые он должен выполнять. Чтобы выполнить эти задачи, он должен сообщаться с соответствующим уровнем в другой системе.

Уровневая модель OSI исключает прямую связь между соответствующими уровнями других систем. Следовательно, каждый уровень Системы А должен полагаться на услуги, предоставляемые ему смежными уровнями Системы А, чтобы помочь осуществить связь с соответствующим ему уровнем Системы В. Взаимоотношения между смежными уровнями отдельной системы показаны на Рис.1-2.

Предположим, что Уровень 4 Системы А должен связаться с Уровнем 4 Системы В. Чтобы выполнить эту задачу, Уровень 4 Системы А должен воспользоваться услугами Уровня 3 Системы А. Уровень 4 называется "пользователем услуг", а Уровень 3 - "источником услуг". Услуги Уровня 3 обеспечиваются Уровню 4 в "точке доступа к услугам" (SAP), которая представляет собой просто местоположение, в котором Уровень 4 может запросить услуги Уровня 3. Как видно из рисунка, Уровень 3 может предоставлять свои услуги множеству об'ектов Уровня 4.

Форматы информации.

Каким образом Уровень 4 Системы В узнает о том, что необходимо Уровню 4 Системы А? Специфичные запросы Уровня А запоминаются как управляющая информация, которая передается между соответствующими уровнями в блоке, называемом заголовком; заголовок предшествуют фактической прикладной информации. Например, предположим, что Система А хочет отправить в Систему В следующий текст (называемый "данные" или "информация"):  The small grey cat ran up the wall to try to catch the red bird.

Этот текст передается из прикладной программы Системы А в верхний уровень этой системы. Прикладной уровень Системы А должен передать определенную информацию в прикладной уровень Системы В, поэтому он помещает управляющую информацию (в форме кодированного заголовка) перед фактическим текстом, который должен быть передан. Этот информационный блок передается в Уровень 6 Системы А, который может предварить его своей собственной управляющей информацией. Размеры сообщения увеличиваются по мере того, как оно проходит вниз через уровни до тех пор, пока не достигнет сети, где оригинальный текст и вся связанная с ним управляющая информация перемещаются к Системе В, где они поглащаются Уровнем 1 Системы В. Уровень 1 Системы В отделяет заголовок уровня 1 и прочитывает его, после чего он знает, как обрабатывать данный информационный блок. Слегка уменьшенный в размерах информационный блок передается в Уровень 2, который отделяет заголовок Уровня 2, анализирует его, чтобы узнать о действиях, которые он должен выполнить, и т.д. Когда информационный блок наконец доходит до прикладной программы Системы В, он должен содержать только оригинальный текст.

Концепция заголовка и собственно данных относительна и зависит от перспективы того уровня, который в данный момент анализирует информационный блок. Например, в Уровне 3 информационный блок состоит из заголовка Уровня 3 и следующими за ним данными. Однако данные Уровня 3 могут содержать заголовки Уровней 4, 5, 6 и 7. Кроме того, заголовок Уровня 3 является просто данными для Уровня 2. Эта концепция иллюстрируется на Рис. 1-3. И наконец, не все уровни нуждаются в присоединении заголовков. Некоторые уровни просто выполняют трансформацию фактических данных, которые они получают, чтобы сделать их более или менее читаемыми для смежных с ними уровней.

Проблемы совместимости.Эталонная модель OSI не является реализацией сети. Она только определяет функции каждого уровня. В этом отношении она напоминает план для постройки корабля. Точно также, как для выполнения фактической работы по плану могут быть заключены контракты с любым количеством кораблестроительных компаний, любое число поставщиков сети могут построить протокол реализации по спецификации протокола. И если этот план не будет предельно понятным, корабли, построенные различными компаниями, пользующимися одним и тем же планом, пусть незначительно, но будут отличаться друг от друга. Примером самого незначительного отличия могут быть гвозди, забитые в разных местах.

Чем об'ясняется разница в реализациях одного и того же плана корабля (или спецификации протокола)? Частично эта разница вызвана неспособностью любой спецификации учесть все возможные детали реализации. Кроме того, разные люди, реализующие один и тот же проект, всегда интерпретируют его немного по-разному. И наконец, неизбежные ошибки реализации приводят к тому, что изделия разных реализаций отличаются исполнением. Этим об'ясняется то, что реализация протокола Х одной компании не всегда взаимодействует с реализацией этого протокола, осуществленной другой компанией.

Уровни OSI.

После того, как стали понятными основные особенности принципа деления на уровни модели OSI, можно приступить к обсуждению каждого отдельного уровня и его функций. Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для того, чтобы связь могла состояться.

Прикладной уровень

Прикладной уровень - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д.

Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень

Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

Сеансовый уровень

Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более об'ектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между об'ектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень

Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через об'единенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Сетевой уровень

Сетевой уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом).

Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Канальный уровень

Канальный уровень (формально называемый информационно-канальным уровнем или уровнем звена передачи данных) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Г) Протоколы компьютерной сети.

Протоколы (protocols) — это набор правил и процедур, регулирующих порядок осуществления некоторой связи. Протоколы — это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом. Три основных момента, касающихся протоколов.

  1. Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

  2. Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает. Если, например, какой-то протокол работает на Физическом уровне, то это означает, что он обеспечивает прохождение пакетов через плату сетевого адаптера и их поступление в сетевой кабель.

  3. Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов. Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функциям и возможностям стека.

Работа протоколов

Передача данных по сети, с технической точки зрения, должна быть разбита на ряд последовательных шагов, каждому из которых соответствуют свои правила и процедуры, или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, эти действия (шаги) должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе эти действия выполняются в направлении сверху вниз, а на компьютере-получателе -снизу вверх.

Компьютер - отправитель

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия:

  • разбивает данные на небольшие блоки, называемые пакетами, с которыми может работать протокол;

  • добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему;

  • подготавливает данные к передаче через плату сетевого адаптера и далее — по сетевому кабелю.

Компьютер - получатель

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке:

  • принимает пакеты данных из сетевого кабеля;

  • через плату сетевого адаптера передает пакеты в компьютер;

  • удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем;

  • копирует данные из пакетов в буфер — для их объединения в исходный блок данных;

  • передает приложению этот блок данных в том формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнять каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными.

Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

Маршрутизируемые и немаршрутизируемые протоколы

До середины 80-х годов большинство локальных сетей были изолированными. Они обслуживали один отдел или одну компанию и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими коммерческой информации возрос, ЛВС стали компонентами больших сетей.

Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми (routable) протоколами. Так как маршрутизируемые протоколы могут использоваться для объединения нескольких локальных сетей в глобальную сеть, их роль постоянно возрастает.

Протоколы в многоуровневой архитектуре

Несколько протоколов, которые работают в сети одновременно, обеспечивают следующие операции с данными:

  • подготовку;

  • передачу;

  • прием;

  • последующие действия.

Работа различных протоколов должна быть скоординирована так, чтобы исключить конфликты или незаконченные операции. Этого можно достичь с помощью разбиения на уровни.

Стеки протоколов

Стек протоколов (protocol stack) — это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

Прикладной

 

Инициализация или прием запроса

Представительский

 

Добавление в пакет форматирующей, отображающей или шифрующей информации

Сеансовый

 

Добавление информации о трафике с указанием момента отправки пакета

Транспортный

 

Добавление информации для обработки ошибок

Сетевой

 

Добавление адресной информации и информации о месте пакета в последовательности передаваемых пакетов

Канальный

 

Добавление информации для проверки ошибок и подготовка данных для передачи по физическому соединению

Физический

 

Передача пакета как потока битов

Так же как и уровни в модели OSI, нижние уровни стека описывают правила взаимодействия оборудования, изготовленного разными производителями. А верхние уровни описывают правила для проведения сеансов связи и интерпретации приложений. Чем выше уровень, тем сложнее становятся решаемые им задачи и связанные с этими задачами протоколы.

Привязка

Процесс, который называется привязка, позволяет с достаточной гибкостью настраивать сеть, т.е. сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Например, два стека протоколов, IPX/SPX и TCP/IP, могут быть привязаны к одной плате сетевого адаптера. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

Порядок привязки определяет очередность, с которой операционная система выполняет протоколы. Если с одной платой сетевого адаптера связано несколько протоколов, то порядок привязки определяет очередность, с которой будут использоваться протоколы при попытках установить соединение. Обычно привязку выполняют при установке операционной системы или протокола. Например, если TCP/IP — первый протокол в списке привязки, то именно он будет использоваться при попытке установить связь. Если попытка неудачна, компьютер попытается установить соединение, используя следующий по порядку протокол в списке привязки.

Привязка (binding) не ограничивается установкой соответствия стека протоколов плате сетевого адаптера. Стек протоколов должен быть привязан (или ассоциирован) к компонентам, уровни которых и выше, и ниже его уровня. Так, TCP/IP наверху может быть привязан к Сеансовому уровню NetBIOS, а внизу — к драйверу платы сетевого адаптера. Драйвер, в свою очередь, привязан к плате сетевого адаптера.

Стандартные стеки

В компьютерной промышленности в качестве стандартных моделей протоколов разработано несколько стеков. Вот наиболее важные из них:

  • набор протоколов ISO/OSI;

  • IBM System Network Architecture (SNA);

  • Digital DECnet™;

  • Novell NetWare;

  • Apple AppleTalk®;

  • набор протоколов Интернета, TCP/IP.

Протоколы этих стеков выполняют работу, специфичную для своего уровня. Однако коммуникационные задачи, которые возложены на сеть, приводят к разделению протоколов на три типа:

  • прикладной;

  • транспортный;

  • сетевой.

Прикладной

Добавление информации о трафике с указанием момента отправки пакета

Представительский

Сеансовый

Транспортный

Добавление информации для обработки ошибок

Сетевой

Передача пакета как потока битов

Канальный

Физический

Как видите, схема расположения этих типов соответствует модели OSI.

Прикладные протоколы

Прикладные протоколы работают на верхнем уровне модели OSI. Они обеспечивают взаимодействие иру\лож^л\мй vi обмен данными между ними. К наиболее популярным прикладным протоколам относятся:

  • APPC(Advanced Program-to-Program Communication) — одноранговый SNA-протокол фирмы IBM, используемый в основном на AS/400®;

  • FTAM (File Transfer Access and Management) — протокол OSI доступа к файлам;

  • Х.400 — протокол CCITT для международного обмена электронной почтой;

  • Х.500 — протокол CCITT служб файлов и каталогов на нескольких системах;

  • SMTP (Simple Mail Transfer Protocol) — протокол Интернета для обмена электронной почтой;

  • FTP (File Transfer Protocol) — протокол Интернета для передачи файлов;

  • SNMP (Simple Network Management Protocol) — протокол Интернета для мониторинга сети и сетевых компонентов;

  • Telnet — протокол Интернета для регистрации на удаленных хостах и обработки данных на них;

  • Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры;

  • NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры фирмы Novell;

  • Apple Talk и Apple Share® — набор сетевых протоколов фирмы Apple;

  • AFP (AppleTalk Filling Protocol) — протокол удаленного доступа к файлам фирмы Apple;

  • DAP (Data Access Protocol) — протокол доступа к файлам сетей DECnet.

Транспортные протоколы

Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данных между ними. К популярным транспортным протоколам относятся:

  • TCP (Transmission Control Protocol) — TCP/IР-протокол для гарантированной доставки данных, разбитых на последовательность фрагментов;

  • SPX— часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для данных, разбитых на последовательность фрагментов, фирмы Novell; NWLink — реализация протокола IPX/SPX от фирмы Microsoft;

  • NetBEUI [NetBIOS (Network Basic Input/Output System) Extended User Interface — расширенный интерфейс пользователя] — устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI);

  • ATP (AppleTalk Transaction Protocol), NBP (Name Binding Protocol) — протоколы сеансов связи и транспортировки данных фирмы Apple.

Сетевые протоколы

Сетевые протоколы обеспечивают услуги связи. Эти протоколы управляют несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Сетевые протоколы, кроме того, определяют правила для осуществления связи в конкретных сетевых средах, например Ethernet или Token Ring. К наиболее популярным сетевым протоколам относятся:

  • IP (Internet Protocol) — TCP/IР-протокол для передачи пакетов;

  • IPX (Internetwork Packet Exchange) — протокол фирмы NetWare для передачи и маршрутизации пакетов;

  • NWLink — реализация протокола IPX/SPX фирмой Microsoft;

  • NetBEUI — транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS;

  • DDP (Datagram Delivery Protocol) — AppleTalk-протокол транспортировки данных.

Стандарты протоколов

Модель OSI помогает определить, какие протоколы нужно использовать на каждом уровне. Продукты от разных производителей, которые соответствуют этой модели, могут вполне корректно взаимодействовать друг с другом.

 

Прикладной

Представительский

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Windows NT

Редиректоры Сервер

TDI

TCP/IP NWLink NBT DLC

NDIS 3.0

NDIS: Оболочка Драйверы плат сетевого адаптера

Физический

Internet

NFS XDR RPC SNMP FTP Telnet SMTP

TCP

IP

ЛВС-драйверы

Управление доступом к среде (MAC)

Физический

NetWare

NetWare Core Protocol (NCP)

Именованные каналы NetBIOS SXP

IPX

ЛВС-драйверы

NDIS

Физический

Apple

Apple Share

Apple Talk Filing Protocol (AFP)

ASP ADSP ZIP PAP ATP NBP AEP RTMP

DDP (Datagram Delivery Protocol)

ЛВС-драйверы

LocalTalk TokenTalk EtherTalk

Физический

ISO, IEEE, ANSI (American National Standards Institute), CCITT (Comite Consultatif Internationale de Telegraphie et Telephonie), сейчас называемый ITU (International Telecommunications Union), и другие организации по стандартизации разработали протоколы, соответствующие некоторым уровням модели OSI.

IEEE-протоколы Физического уровня:

  • 802.3 (Ethernet). Это сеть «логическая шина», скорость передачи данных — 10 Мбит/с. Данные передаются по кабелю каждому компьютеру, но принимают их только те, кому они адресованы. Протокол CSMA/CD регулирует трафик сети, разрешая передачу только тогда, когда кабель не занят и другой компьютер не передает информацию.

  • 802.4 (передача маркера). Это сеть топологии «шина», использующая схему передачи маркера. Каждый компьютер принимает данные, но реагируют на них только те, кому они адресованы. Маркер, передаваемый от компьютера к компьютеру, определяет тот компьютер, которому разрешена передача.

  • 802.5 (Token Ring). Это сеть «логическое кольцо», скорость передачи данных — 4 или 16 Мбит/с. Хотя эта сеть и называется кольцом, выглядит она как звезда, поскольку все сетевые компьютеры подключены к концентратору (MAU). Впрочем, кольцо реализуется внутри концентратора. Маркер, передаваемый по кольцу, определяет тот компьютер, которому разрешена передача.

IEEE-протоколы Канального уровня поддерживают связь на подуровне Управления доступом к среде.

  • Прикладной уровень

  • Представительский уровень

  • Сеансовый уровень

  • Транспортный уровень

  • Сетевой уровень

  • Канальный уровень

    • Управление логической связью (LLC)

    • Управление доступом к среде (MAC)

  • Физический уровень

Драйвер управления доступом к среде — это драйвер устройства, расположенный на подуровне Управления доступом к среде. Этот драйвер называют также драйвером платы сетевого адаптера. Он предоставляет низкоуровневый доступ к сетевым адаптерам, обеспечивая поддержку передачи данных и некоторые основные функции по управлению адаптером.

Протокол управления доступом к среде определяет, какой именно компьютер может использовать сетевой кабель, если несколько компьютеров одновременно пытаются получить к нему доступ. CSMA/CD, протокол 802.3, разрешает компьютеру начинать передачу лишь тогда, когда на данный момент нет других передающих компьютеров. Если два компьютера начинают передачу одновременно, происходит своего рода столкновение — коллизия (collision). Протокол обнаруживает коллизию и запрещает передачу до тех пор, пока кабель не освободится. Затем, через случайный интервал времени, каждый компьютер вновь пытается начать передачу.

Распространенные протоколы

Среди множества протоколов наиболее популярны следующие:

  • TCP/IP; NetBEUI; Х.25;

  • Xerox Network System (XNS™);

  • IPX/SPXHNWLink;

  • APPC;

  • AplleTalk;

  • набор протоколов OSI;

  • DECnet.

TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) — промышленный стандартный набор протоколов, которые обеспечивают связь в гетерогенной (неоднородной) среде, т.е. обеспечивают совместимость между компьютерами разных типов. Совместимость — одно из основных преимуществ TCP/IP, поэтому большинство ЛВС поддерживает его. Кроме того, TCP/IP предоставляет доступ к ресурсам Интернета, а также маршрутизируемый протокол для сетей масштаба предприятия. Поскольку TCP/IP поддерживает маршрутизацию, он обычно используется в качестве межсетевого протокола. Благодаря своей популярности TCP/IP стал стандартом де-факто для межсетевого взаимодействия. К другим специально созданным для набора TCP/IP протоколам относятся:

  • SMTP (Simple Mail Transfer Protocol) — электронная почта;

  • FTP (File Transfer Protocol) — обмен файлами между компьютерами, поддерживающими TCP/IP;

  • SNMP (Simple Network Management Protocol) — управление сетью.

TCP/IP имеет два главных недостатка: размер и недостаточная скорость работы. TCP/IP — относительно большой стек протоколов, который может вызвать проблемы у MS-DOS-клиентов. Однако для таких операционных систем, как Windows NT или Windows 95, размер не является проблемой, а скорость работы сравнима со скоростью протокола IPX.

NetBEUI

NetBEUI — расширенный интерфейс NetBIOS. Первоначально NetBIOS и NetBEUI были тесно связаны и рассматривались как один протокол. Затем некоторые производители ЛВС так обособили NetBIOS, протокол Сеансового уровня, что он уже не мог использоваться наряду с другими маршрутизируемыми транспортными протоколами. NetBIOS (Network Basic Input/Output System — сетевая базовая система ввода/вывода) -это IBM-интерфейс Сеансового уровня с ЛВС, который выступает в качестве прикладного интерфейса с сетью. Этот протокол предоставляет программам средства для осуществления сеансов связи с другими сетевыми программами. Он очень популярен, так как поддерживается многими приложениями.

NetBEUI — небольшой, быстрый и эффективный протокол Транспортного уровня, который поставляется со всеми сетевыми продуктами фирмы Microsoft. Он появился в середине 80-х годов в первом сетевом продукте Microsoft — MS®-NET.

К преимуществам NetBEUI относятся небольшой размер стека (важно для MS-DOS-компьютеров), высокая скорость передачи данных по сети и совместимость со всеми сетями Microsoft. Основной недостаток NetBEUI — он не поддерживает маршрутизацию. Это ограничение относится ко всем сетям Microsoft.

Х.25

Х.25 — набор протоколов для сетей с коммутацией пакетов. Его использовали службы коммутации, которые должны были соединять удаленные терминалы с мэйнфреймами.

XNS

Xerox Network System (XNS) был разработан фирмой Xerox для своих сетей Ethernet. Его широкое использование началось с 80-х годов, но постепенно он был вытеснен протоколом TCP/IP. XNS — большой и медленный протокол, к тому же он применяет значительное количество широковещательных сообщений, что увеличивает трафик сети.

IPX/SPX и NWLink

Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX) — стек протоколов, используемый в сетях Novell. Как и NetBEUI, относительно небольшой и быстрый протокол. Но, в отличие от NetBEUI, он поддерживает маршрутизацию. IPX/SPX -«наследник» XNS. NWLink — реализация IPX/SPX фирмой Microsoft. Это транспортный маршрутизируемый протокол.

АРРС

АРРС (Advanced Program-to-Program Communication) — транспортный протокол фирмы IBM, часть Systems Network Architecture (SNA). Он позволяет приложениям, работающим на разных компьютерах, непосредственно взаимодействовать и обмениваться данными.

AppleTalk

AppleTalk — собственный стек протоколов фирмы Apple Computer, позволяющий компьютерам Apple Macintosh совместно использовать файлы и принтеры в сетевой среде.

Набор протоколов OSI

Набор протоколов OSI — полный стек протоколов, где каждый протокол соответствует конкретному уровню модели OSI. Набор содержит маршрутизируемые и транспортные протоколы, серии протоколов IEEE Project 802, протокол Сеансового уровня, Представительского уровня и несколько протоколов Прикладного уровня. Они обеспечивают полнофункциональность сети, включая доступ к файлам, печать и эмуляцию терминала.

DECnet

DECnet — собственный стек протоколов фирмы Digital Equipment Corporation. Этот набор аппаратных и программных продуктов реализует архитектуру Digital Network Architecture (DNA). Указанная архитектура определяет сети на базе локальных вычислительных сетей Ethernet, сетей FDDI MAN (Fiber Distributed Data Interface Metropolitan Area Network) и глобальных вычислительных сетей, которые используют средства передачи конфиденциальных и общедоступных данных. DECnet может использовать как протоколы TCP/IP и OSI, так и свои собственные. Данный протокол принадлежит к числу маршрутизируемых.

Несколько раз DECnet обновлялся; каждое обновление называется фазой. Текущая версия — DECnet Phase V. Используются как собственные протоколы DEC, так и достаточно полная реализация набора протоколов OSI.

Д) Электронная почта

Электро́нная по́чта (англ. email, e-mail, от англ. electronic mail) — технология и предоставляемые ею услуги по пересылке и получению электронных сообщений (называемых «письма» или «электронные письма») по распределённой (в том числе глобальной) компьютерной сети.

Электронная почта по составу элементов и принципу работы практически повторяет систему обычной (бумажной) почты, заимствуя как термины (почта, письмо, конверт, вложение, ящик, доставка и другие), так и характерные особенности — простоту использования, задержки передачи сообщений, достаточную надёжность и в то же время отсутствие гарантии доставки.

Достоинствами электронной почты являются: легко воспринимаемые и запоминаемые человеком адреса вида имя_пользователя@имя_домена(например somebody@example.com); возможность передачи как простого текста, так и форматированного, а также произвольных файлов; независимость серверов (в общем случае они обращаются друг к другу непосредственно); достаточно высокая надёжность доставки сообщения; простота использования человеком и программами.

Недостатки электронной почты: наличие такого явления, как спам (массовые рекламные и вирусные рассылки); теоретическая невозможность гарантированной доставки конкретного письма; возможные задержки доставки сообщения (до нескольких суток); ограничения на размер одного сообщения и на общий размер сообщений в почтовом ящике (персональные для пользователей).

В настоящее время любой начинающий пользователь может завести свой бесплатный электронный почтовый ящик, достаточно зарегистрироваться на одном из интернет-порталов.

В скором будущем электронная почта будет доступна не только в латинских доменных зонах, но и в кириллической зоне .РФ

Появление электронной почты можно отнести к 1965 году, когда сотрудники Массачусетского технологического института (MIT)Ноэль Моррис и Том Ван Влек написали программу MAIL для операционной системы CTSS (Compatible Time-Sharing System), установленную на компьютере IBM 7090/7094.

Текстовый интерфейс программы mail

Общее развитие электронной почты шло через развитие локального взаимодействия пользователей на многопользовательских системах. Пользователи могли, используя программу mail (или её эквивалент), пересылать друг другу сообщения в пределах одного мейнфрейма(большого компьютера). Следующий шаг был в возможности переслать сообщение пользователю на другой машине — для этого использовалось указание имени машины и имени пользователя на машине. Адрес мог записываться в виде foo!joe (пользователь joe на компьютере foo). Третий шаг для становления электронной почты произошёл в момент появления передачи писем через третий компьютер. В случае использования UUCP-адрес пользователя включал в себя маршрут до пользователя через несколько промежуточных машин (например, gate1!gate2!foo!joe — письмо для joe через машину gate1, gate2 на машину foo). Недостатком такой адресации было то, что отправителю (или администратору машины, на которой работал отправитель) необходимо было знать точный путь до машины адресата.

После появления распределённой глобальной системы имён DNS, для указания адреса стали использоваться доменные имена — user@example.com — пользователь user на машине example.com. Одновременно с этим происходило переосмысление понятия «на машине»: для почты стали использоваться выделенные серверы, на которые не имели доступ обычные пользователи (только администраторы), а пользователи работали на своих машинах, при этом почта приходила не на рабочие машины пользователей, а на почтовый сервер, откуда пользователи забирали свою почту по различным сетевым протоколам (среди распространённых на настоящий момент — POP3, IMAP, MAPI, веб-интерфейсы). Одновременно с появлением DNS была продумана система резервирования маршрутов доставки почты, а доменное имя в почтовом адресе перестало быть именем конкретного компьютера и стало просто фрагментом почтового адреса. За обслуживание домена могут отвечать многие серверы (возможно, физически размещённые на разных континентах и в разных организациях), а пользователи из одного домена могут не иметь между собой ничего общего (особенно подобное характерно для пользователей бесплатных серверов электронной почты).

Кроме того, существовали и другие системы электронной почты (некоторые из них существуют и сейчас), как то: Netmail в сетиФидонет, X.400 в сетях X.25[уточнить]. Доступ к ним из сети Интернет и обратно осуществляется через почтовый шлюз. Для маршрутизации почты в сетях X.25 в DNS предусмотрена специальная ресурсная запись c соответствующим названием X25 

Общепринятым в мире протоколом обмена электронной почтой является SMTP (англ. Simple mail transfer protocol — простой протокол передачи почты). В общепринятой реализации он использует DNS для определения правил пересылки почты (хотя в частных системах, вроде Microsoft Exchange, SMTP может действовать исходя из информации из других источников).

В различных доменах настроены свои, независимые друг от друга, почтовые системы. У каждого почтового домена может быть несколько пользователей. (Однако, фактически, может быть так, что одна организация или персона владеет многими доменами, которые обслуживаются (физически) одной почтовой системой). Почта передаётся между узлами с использованием программ пересылки почты (англ. Mail transfer agent, MTA; такими, как, например, sendmail, exim4, postfix, Microsoft Exchange Server, Lotus Domino и т. д.). Поведение систем при связи друг с другом строго стандартизировано, для этого используется протокол SMTP (и соблюдение этого стандарта, наравне с всеобщей поддержкой DNS всеми участниками, является основой для возможности связи «всех со всеми» без предварительных договорённостей). Взаимодействие почтовой системы и пользователей, в общем случае, никак не регламентируется и может быть произвольным, хотя существуют как открытые, так и закрытые (завязанные на ПО конкретных производителей) протоколы взаимодействия между пользователями и почтовой системой. Программа, работающая в почтовой системе и обслуживающая пользователей, называется MDA (англ. mail delivery agent, агент доставки почты). В некоторых почтовых системах MDA и MTA могут быть объединены в одну программу, в других системах могут быть разнесены в виде разных программ или вообще выполняться на различных серверах. Программа, с помощью которой пользователь осуществляет доступ, называется MUA (англ. mail user agent). В случае использования веб-интерфейса для работы с почтой, ее роль выполняет приложение веб-интерфейса, запускаемое на сервере.

Внутри заданной почтовой системы (обычно находящейся в рамках одной организации) может быть множество почтовых серверов, выполняющих как пересылку почты внутри организации, так и другие, связанные с электронной почтой задачи: фильтрацию спама, проверку вложений антивирусом, обеспечение автоответа, архивация входящей/исходящей почты, обеспечение доступа пользователям различными методами (от POP3 до ActiveSync). Взаимодействие между серверами в рамках одной почтовой системы может быть как подчинено общим правилам (использование DNS и правил маршрутизации почты с помощью протокола SMTP), так и следовать собственным правилам компании (используемого программного обеспечения).

Релеи

DNS позволяет указать в качестве принимающего сервера (MX-запись) любой узел интернета, не обязательно являющийся частью доменной зоны домена получателя. Это может использоваться для настройки релеинга (пересылки) почты через третьи серверы. Сторонний сервер (например, более надёжный, чем серверы пользователя) принимает почту для домена пользователя и пересылает его на почтовые серверы пользователя как только появляется возможность. Исторически контроля за тем, «кому пересылать» почту, не было (или этому не придавали должного значения) и серверы без подобного контроля передавали почту на любые домены. Такие серверы называются открытыми релеями (в настоящее время новые открытые релеи появляются в основном из-за ошибок в конфигурировании).

Для своих пользователей серверы почтовой системы являются релеями (пользователи отправляют почту не на серверы почтовой системы адресата, а на «свой» почтовый сервер, который передаёт письма далее). Во многих сетях провайдероввозможность отправлять письма по протоколу SMTP за пределы сети закрыта (из-за использования этой возможности троянами,вирусами). В этом случае провайдер предоставляет свой SMTP-сервер, через который и направляется вся почта за пределы сети. Открытым релеем при этом считается такой релей, который не проверяет, является ли пользователь «своим» (проверка может осуществляться как на основании сетевого адреса компьютера пользователя, так и на основании идентификации пользователя паролем/сертификатом).