Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Эндокринология 2-е издание

.pdf
Скачиваний:
76
Добавлен:
19.03.2016
Размер:
1.5 Mб
Скачать

Согласно современным представлениям, полный регуляторный круг между нейроэндокринными и иммунными механизмами включает также пептиды, общие для обеих систем. В частности, показана способность гипоталамических нейронов секретировать ИЛ-1 и выделен ответственный за его продукцию ген, экспрессия которого индуцируется бактериальными антигенами и кортикотропином. Описаны нейрональные пути в медиобазальный гипоталамус человека и крысы, содержащие ИЛ-1 и ИЛ-6, а также гипофизарные клетки, выделяющие эти пептиды. Таким образом, иммуномедиаторы могут регулировать функции передней доли гипофиза через:

1)эндокринный механизм – циркулирующие в крови лимфокины активированных лимфоцитов;

2)нейроэндокринные эффекты, осуществляемые интерлейкинами гипоталамуса через тубероинфундибулярную портальную систему, и

3)паракринный контроль в самом гипофизе.

С другой стороны, чувствительные иммунохимические и молекулярные методы показали, что иммунокомпетентные клетки секретируют многие пептиды и гормоны, классически связанные с эндокринной и нейрональной активностью: лимфоциты и макрофаги синтезируют АКТГ, лимфоциты – гормон роста, пролактин, ТТГ, энкефалины; мононуклеарные лимфоциты и тучные клетки – ВИП, соматостатин, клетки тимуса – аргинин-вазопрессин, окситоцин, нейрофизин. При этом секретируемые лимфоцитами гипофизарные гормоны регулируются теми же факторами, что и гипофиз: например, секреция АКТГ лимфоцитами угнетается глюкокортикоидами и стимулируется кортикотропинрилизинг гормоном. Предложена концепция, согластно которой, выделение лимфоцитами перечисленных гормонов обеспечивает аутокринную и паракринную регуляцию локальной иммунной реакции.

Таким образом, функции трех главных регуляторных систем – нервной, эндокринной и иммунной, – интегрированы в сложные регуляторные круги, функционирующие по принципу обратной связи. При этом периферические лимфоциты, если следовать концепции Д. Блэлока (J. Blalock, 1989), обеспечивают чувствительный механизм, посредством которого распознаются некогнитивные стимулы (чужеродные вещества) и мобилизуются нейроэндокринные адаптивные ответы.

Значение регуляторных пептидов в патологии

Поскольку пептидные гормоны являются полифункциональной системой, участвующей в регуляции многих функций в организме, вполне вероятно их вовлечение в патогенез различных заболеваний. Так, установлено нарушение концентраций пептидов мозга при дегенеративных неврологических заболеваний неизвестной этиологии: болезнях Альцгеймера (снижение концентрации соматостатина в коре головного мозга) и Гантингтона (снижение концентрации холецистокинина, вещества П и энкефалинов, но и повышение содержания соматостатина в базальных ганглиях, а также снижение мест связывания холе-

21

цистокинина в этих структурах и в коре больших полушарий). Являются ли эти изменения первичными или появляются вторично при развитии заболеваний предстоит выяснить.

Открытие опиоидных пептидов и распределение их рецепторов в различных мозговых структурах, в частности, в лимбической системе привлекло внимание к оценке их значения в патогенезе психических расстройств. Предложена гипотеза существования опиоидной недостаточности у больных шизофренией, в частности невозможность образования -эндорфина, обладающего нейролептиеским действием. Установлено увеличение концентрации атриопептида при застойных изменениях кровообращения, что, возможно, является механизмом компенсации нарушений обмена натрия (его задержки).

Изучение олигопептидных гормонов как регуляторной системы привело к выделению особой группы зоболеваний, обусловленных патологичей собственно этой системы – апудопатий. Апудопатии – заболевания, связанные с нарушением структуры и функции апудоцитов и выражающиеся в определенных клинический синдромах. Различают первичные апудопатии, обусловленные патологией самих апудоцитов, и вторичные, возникающие как реакция апудоцитов на нарушение гомеостаза организма, вызванные заболеванием, патогенез которого первично не связан с патологией АПУД-системы (при инфекционных заболеваниях, опухолевом росте, болезнях нервной системы и т.д.).

Первичные апудопатии могут проявляться в гиперфункции, гипофункции. дисфункции, в образовании апудом – опухолей из клеток АПУД-системы. Примерами являются следующие апудомы.

Гастринома – апудома из клеток, продуцирующих гастрин, который, как известно, стимулирует выделение большого количества желудочного сока с высокой кислотностью и переваривающей силой. Поэтому клинически гастринома проявляется развитием ульцерогенного синдрома Золлингера-Эллисона.

Кортикотропинома – апудома, развивающаяся из апудобластов желудоч- но-кишечного тракта и проявляющаяся эктопической гиперпродукцией АКТГ и развитием синдрома Иценко-Кушинга.

ВИПома – опухоль из клеток, секретирующих вазоактивный интестинальный пептид. Может локализоваться в двенадцатиперстной кишке или поджелудочной железе. Проявляется развитием водной диареи и обезвоживанием, а также расстройством обмена электролитов.

Соматостатинома – опухоль из клеток кишечника или островковой ткани поджелудочной железы, продуцирующих соматостатин. Соматостатинома обычно развивается как опухоль дельта-клеток поджелудочной железы, секретирующих соматостатин. Характеризуется клиническим синдромом, включающим сахарный диабет, желчнокаменную болезнь, гипохлоргидрию, стеаторею и анемию. Диагностируется по повышению концентрации соматостатина в плазме крови.

22

Применение в медицине

На базе регуляторных пептидов созданы первые лекарственные препараты. Так, олигопептиды (короткие пептиды) N-терминального фрагмента АКТГ и МСГ используются для коррекции внимания и запоминания, вазопрессин – для улучшения памяти при травматической и других амнезиях. Широкое применение в лечебной практике имеет отечественный препарат даларгин (аналог лейэнкефалина). Начат коммерческий выпуск сурфагона (аналог люлиберина), предназначенного для лечения нарушений репродуктивной системы.

23

ГЛАВА 3 ПАТОЛОГИЯ ЭНДОКРИННОЙ СИСТЕМЫ.

ОБЩИЕ ПРИЧИНЫ ЭНДОКРИННЫХ НАРУШЕНИЙ

В зависимости от локализации основной причины и механизма нарушения функций желез внутренней секреции все этиологические факторы можно разделить на 4 основные группы:

1.Нарушение центральных механизмов регуляции. Это первичные из-

менения в ЦНС или в гипоталамусе и гипофизе.

Изменения в ЦНС могут реализовываться в патологию железы внутренней секреции через гипофиз (трансгипофизарно) и парагипофизарно. Например, психоэмоциоанальная травма может посредством нервных влияний на щитовидную железу вызвать гипертиреоз, а в поджелудочной железе – дистрофию и некроз островкового аппарата и развитие сахарного диабета.

Трансгипофизарно нервные влияния реализуются путем изменения выработки рилизинг-фактора и затем тропных гормонов. А в некоторых случаях возбуждения в нервной системе непосредственно ведет к усилению выработки гормона – например, вазопрессина.

Изменение центральной эндокринной регуляции может быть связано с первичным изменением выработки рилизинг-факторов или тропных гормонов,

врезультате которого возникают вторичные нарушения функции эндокринной железы (вторичные эндокринопатии). В отличие от этой формы патологии эндокринопатии, вызванные прямым повреждением ткани железы, получили название первичных.

2."Железистые" причины. Данная группа причин включает факторы, прямо повреждающие ткань железы: опухоли, травмы, воспалительные процессы, расстройства кровообращения, гипоксии, инфекции (в том числе вирусные), интоксикации, склерозирование железы, удаление железы, длительная бездеятельность, истощение, а также наследственные дефекты синтеза гормонов.

3.Периферические (внежелезистые) причины:

нарушение инактивации гормонов в тканях и печени;

нарушение связывания гормонов с белками;

образование антител к гормону;

нарушение соединения гормона со своими рецепторами в клеткахмишенях;

существование антигормонов и их действие на рецепторы по механизму конкурентного связывания.

24

Антигормоны – вещества, в том числе гормоны, имеющие сродство к рецепторам данного гормона и взаимодействуют с ними. Занимая рецепторы, они блокируют эффект данного гормона. Примером антигормонов могут служить андрогены и эстрогены.

4. Нарушения в системе обратной связи. Процесс саморегуляции функ-

ции желез по механизму обратной связи всегда нарушается при любой форме патологии эндокринной системы. Классическим примером может служить атрофия коры надпочечников при длительном лечении кортикостероидами. Важную роль этот механизм играет также в патогенезе адреногенитального и других синдромов.

Классификация эндокринопатий

1. По характеру изменения функции:

гиперфункция;

гипофункция;

дисфункция;

эндокринные кризы.

Дисфункция – нарушение соотношений между гормонами, выделяемыми одной и той же железой. Например, нарушение соотношений между эстрогенами и прогестероном, считающееся важным фактором патогенеза фибромиом матки.

Эндокринные кризы – острые проявления эндокринной патологии, могут быть гипер- и гипофункциональными (тиреотоксический криз, гипотиреоидная кома и др.).

2. По происхождению:

первичные (развивающиеся в результате первичного повреждения ткани железы);

вторичные (развивающиеся в результате первичного повреждения ги-

поталамуса).

3. По распространенности нарушений:

моногландулярные; полигландулярные.

Механизмы компенсации нарушений эндокринных функций

В системе эндокринной регуляции функций могут быть выделены следующие две основные группы компенсаторных процессов.

25

I. Компенсация, осуществляемая в пределах определенной эндокринной функции. Она осуществляется на следующих уровнях.

Внутриорганная компенсация. В нее включены следующие механизмы.

1.Саморегуляция на уровне железы: изменение депонирования гормона, ауторегуляция его синтеза и секреции за счет изменения субстрата и предшественников (например, прием йода для активации секреции тиреоидных гормонов).

2.Мобилизация процессов физиологической и репаративной регенерации. Ее осуществлению способствуют:

клеточные стимулы регенерации (в том числе ростовые факторы);

наличие предшественников синтеза гормонов и их метаболитов;

определенный уровень гормонов железы (в частности, тиреоидных);

действие тропного гормона.

Внутрисистемная компенсация. Ее обеспечивают:

гипоталамо-аденогипофизарные влияния с помощью механизмов обратной связи (выделение тропного гормона с последующей гиперфункцией и гипертрофией);

изменение связи с транспортными белками (например, срочная мобилизация кортизола из связи с транскортином, происходящая в начальную фазу стресса в условиях повышенной потребности в гормоне);

компенсаторные реакции на уровне эффектора, которые нередко подчиняются "правилу исходного состояния", а именно: при повышенной функциональной активности ткани-мишени гормон, активирующий функцию может не вызывать эффект или даже оказать противоположное действие (например, катаболический эффект глюкокортикоидов не наблюдается при повышенном катаболизме белков);

компенсация избытка или недостатка содержания гормонов в крови на уровне тканей-мишеней через изменение числа и аффинности рецепторов (правило on- и off-регуляции);

компенсация избыточной секреции гормона через усиление его метаболических превращений в тканях, инактивации в печени и экскреции с мочой.

II. Компенсация нарушенных процессов метаболизма и физиологических функций, регулируемых железой с недостаточной или избыточной активностью. Этот вид компенсации осуществляется за счет следующих ме-

ханизмов межсистемных взаимодействий.

1.Вовлечение нервной регуляции и саморегуляции метаболических и физиологических функций.

2.Осуществление синергизма и антагонизма эффектов гормонов разных желез при регуляции функции (например, синергизм эффектов паратири-

26

на и кальцитриола в обеспечении гиперкальциемии и антагонизм паратирина и кальцитонина в случае гипокальциемии).

3.Взаимодействие между железами

на уровне процессов синтеза и секреции гормона (например, кортикостероиды подавляют выделение тиреоидных гормонов);

на уровне эффекторов благодаря способности гормона изменять реакцию ткани-мишени на действие других гормонов – "реактогенное действие" (например, рост тела не нарушается при нерезком дефиците ГР благодаря действию инсулина и инсулиноподобного фактора роста, повышающих чувствительность тканей к соматотропину).

27

ГЛАВА 4 ПАТОФИЗИОЛОГИЯ ГИПОФИЗА

Гормоны передней доли гипофиза (аденогипофиза)

К данной группе относятся гормоны семейства проопиомеланокортина, т.е. белка, который синтезируется в передней и средней долях гипофиза, а также в пептидергических нейронах гипоталамуса, и является "стволовой" молекулой (прогормоном), при расщеплении которой под действием специальных протеолитических ферментов (конвертаз) образуются: адренокортикотропный гормон (кортикотропин – АКТГ), α-, β- и γ-меланоцитстимулирующие гормоны (меланотропин – МСГ), β-липотропин, β-эндорфин. В передней доле гипофиза синтезируются также соматотропный гормон или гормон роста (соматотропин – СТГ, ГР), гонадотропные гормоны или гонадотропины (фолликулостимулирующий гормон – ФСГ; лютеинизирующий гормон – ЛГ), пролактин (лактогенный гормон), тиреотропный гормон (тиреотропин – ТТГ).

Секреция всех аденогипофизарных гормонов характеризуется суточной периодичностью. Как правило, в дневные часы уровень гормонов низкий, а в ночные часы возрастает.

Промежуточная доля гипофиза секретирует МСГ, задняя же доля депонирует и освобождает в кровоток нейрогормоны – вазопрессин и окситоцин, синтезируемые в нейросекреторных ядрах гипоталамуса – супраоптическом и паравентрикулярных.

Гормоны семейства проопиомеланокортина

Проопиомеланокортин (ПОМК) имеет 265 аминокислотных остатков. Тела ПОМК-содержащих клеток найдены не только в гипофизе, но и в нервной системе: в гипоталамическом аркуатном ядре, ядре солитарного тракта в каудальном отделе ствола головного мозга, в спинном мозге и спинномозговых ганглиях. Окончания их волокон определяются в различных областях гипоталамуса и

вдругих мозговых структурах, в частности, в лимбической системе.

Внастоящее время известно, что многие ткани содержат клетки, способные продуцировать ПОМК, но на более низком уровне, чем в гипофизе, в том числе клетки кожи, селезенки и иммунокомпетентные клетки – лимфоциты и макрофаги.

Протеолитические ферменты, обеспечивающие внутриклеточное "разрезание" ПОМК (посттрансляционный процессинг) имеют тканевую и временную специфичность и обеспечивают образование гормонально активных пептидов. Принятая в настоящее время схема процессинга приведена на рис. 4.

28

Группа пептидов, имеющих сходные аминокислотные последовательности: АКТГ, α-, β- и γ-МСГ, – получили название меланокортиновых пептидов или меланокортинов. Все они содержат неизменную последовательность четырех аминокислот: His-Phe-Arg-Trp, соответствующую фрагменту АКТГ4-9.

Биологические эффекты пептидов, происходящих из ПОМК, в большой степени опосредуются через меланокортиновые рецепторы (МК), пять типов которых описаны в настоящее время.

ПОМК

 

 

 

 

 

 

 

 

 

 

γ-МСГ

 

 

 

АКТГ

 

 

β-липотропин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α-МСГ

 

 

CLIP

 

гипоталамус

 

β-эндорфин

 

 

 

 

 

 

 

 

β-МСГ

Рис. 4. Меланокортиновые пептиды: АКТГ и α-, β- и γ-МСГ, образующиеся при посттрансляционном процессинге ПОМК, являющегося также прекурсором для опиоидных пептидов и CLIP-кортикоподобного пептида промежуточной доли (по A. Catania, S. Gatti, G. Colombo, I. Lipton, 2004).

Хотя адреналовые стимулирующие эффекты АКТГ и пигментные влияния МСГ известны более 50 лет, исследования о том, что меланокортиновые пептиды обладают множественными эффектами в организме являются более недавними. Эти эффекты несоизмеримы и простираются от модуляции лихорадки и воспаления до контроля приема пищи, автономных функций и экзокринной секреции. Более того, недавнее исследование показало, что определенные меланокортиновые пептиды обладают антимикробными эффектами.

В последние годы установлено, что посттрансляционное расщепление ПОМК в гипоталамусе может регулироваться в соответствии с энергетической потребностью. Эта регуляция опосредуется особым гормоном – лептином, представляющим собой циркулирующий в крови протеин. Он синтезируется в жировой ткани, что, в частности, подтверждается положительной корреляцией между концентрацией в ней мРНК лептина и процентом жира в теле.

29

Лептин обнаружен в цереброспинальной жидкости и может транспортироваться в мозг. Рецепторы к нему широко представлены в аркуатном ядре гипоталамуса.

В целом, лептин является частью петли обратной связи: жировая ткань продуцирует его как гуморальный сигнал, который пропорционален количеству жира и действует на гипоталамус, чтобы уменьшить потребление пищи и увеличить расход энергии. Сигналы лептина улавливаются и трансдуцируются ПОМК-ергическими нейронами: лептин прямо усиливает в них потенциалы действия. При этом происходящие из ПОМК биоактивные пептиды (АКТГ, МСГ) являются эндогенными лигандами МК-4 рецепторов, через которые осуществляется контроль аппетита и энергетического гомеостаза. Эта гипотеза получила название липостатической. Ее достоверность подтверждается целым рядом фактов. Так, у мышей с генетически отсутствующими рецепторами к лептину или МК-4 рецепторами проявляется фенотип с ожирением вследствие тяжелой гиперфагии. Уровни мРНК ПОМК значительно ниже в гипоталамусе ожиревших крыс с дефицитом рецепторов к лептину.

Эффекты АКТГ

1.Адренокортикотропное действие, т.е. стимуляция секреции коры надпочечников. Основной эффект – активация пучковой зоны и увеличение продукции кортизола, в меньшей степени – сетчатой зоны и секреции андрогенов и в малой степени – альдостерона.

2.Метаболическое действие. В основном зависит от продукции глюкокортикоидов, но включает и вненадпочечниковые эффекты.

Изменение белкового обмена при гиперпродукции АКТГ: АКТГ → усиление синтеза кортизола в надпочечниках → усиление катаболизма белков → в условиях повышенного распада белков – усиление анаболизма.

Влияние избытка АКТГ на жировой обмен:

а) АКТГ → вненадпочечниковый механизм: усиление липолитической активности жировой ткани → усиление распада жиров → выход в кровь свободных жирных кислот и их окисление до кетоновых тел;

б) АКТГ → надпочечниковый механизм: торможение мобилизации жира + торможение липолитического действия СТГ → активация глюконеогенеза → стимуляция образования жира.

3.Нейротропное действие обусловлено N-концевым фрагментом моле-

кулы гормона – АКТГ4-10 (4-10 – обозначение последовательности аминокислотных остатков). Основные эффекты: улучшение внимания и кратковременной памяти, ускорение обучения человека и животных, улучшение выбора биологически целесообразного поведения при стрессе.

4.Влияние на образование меланина и пигментацию кожи. Действие аналогично эффекту МСГ и объясняется тем, что АКТГ содержит в своей моле-

30